ALNCTT

AK GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

UNIT 2

Basic Computer Engineering (BT-205)

Dept. of CSE Prepared by Chetna Singh

q = .
A£=05E Algorithm

» Algorithm is sequence of activities to be processed for getting desired output
from a given input.

» An algorithm is a set of steps to solve a problem.

> It takes input and gives the desired output.

»The steps must be clear and easy to follow.

» Every algorithm should have a definite end.

»There can be many algorithms to solve the same problem.
» An algorithm must always produce the intended result.
» It must finish its job in a finite amount of time.

» Every step must be clear and have only one meaning.

Dept. of CSE Prepared by Chetna Singh

Gl Properties of algorithm

Finiteness: An algorithm must stop after a limited number of steps.
Definiteness:Every single step must be clear and have only one
meaning.

Well-Defined Input & Output: An algorithm must have well-defined
inputs to work with and produce specified output.

Effectiveness: Algorithms to be developed/written using basic operations.
Every step must be simple enough to be done with pencil and paper.

Clarity: Language Independent, Clear & Unambiguous. An algorithm
must be clear and have only one meaning, regardless of various
languages.

YV Y V VYV

Dept. of CSE Prepared by Chetna Singh

ALNel Check if a given number is even or odd.

» Algorithm Steps (in Pseudocode):

1) START

2) READ the number n

3) CALCULATE the remainder when n is divided by 2 (n % 2)
4) IF the remainder is equal to O:

5) THEN PRINT "The number is EVEN"

6) ELSE:

7) PRINT "The number is ODD"

8) STOP

Dept. of CSE Prepared by Chetna Singh

ADEX FLOWCHART

‘WORKING TOWARDS BEIN!

» The flowchart is a diagram which visually presents the flow of data through
processing systems. This means by seeing a flow chart one can know the
operations performed and the sequence of these operations in a system.
Algorithms are nothing but sequence of steps for solving problems. So a flow
chart can be used for representing an algorithm.

» For example suppose you are going for a picnic with your friends then you
plan for the activities you will do there. If you have a plan of activities then
you know clearly when you will do what activity. Similarly when you have a
problem to solve using computer or in other word you need to write a
computer program for a problem then it will be good to draw a flowchart
prior to writing a computer program. Flowchart is drawn according to defined
rules.

Dept. of CSE Prepared by Chetna Singh

Alner FLOWCHART

“WORKING TOWARDS BEING THE BEST”

Function

An oval represents a start
Start/end or end point

A lineis aconnector that
> Arrows shows relationships between
the representative shapes

A parallelogram

Input/Output represents input or output
N A rectan gll‘g gzg;&eents a
DeciSion A diamond indicates a

decision

Dept. of CSE Prepared by Chetna Singh

AeNer Example of Flowchart

“WORKING TOWARDS BEING THE BEST”

Problem 2: Convert temperature Fahrenheit to
Celsius.

Problem1: Find the area of a circle of radius .

[START] [START]

v
READr / / RE:lDF /

v

AREA = 314"‘r*r

C=5/9*(F-32)

il
| v
/ PRINT AREA / /PR[NT C /

END [END J

Dept. of CSE Prepared by Chetna Singh

Gl General Rules for flowcharting

> All boxes of the flowchart are connected with Arrows. (Not lines)

» Flowchart symbols have an entry point on the top of the symbol with no
other entry points. The exit point for all flowchart symbols is on the bottom
except for the Decision symbol.

The Decision symbol has two exit points; these can be on the sides or the
bottom and one side.

Generally a flowchart will flow from top to bottom. However, an upward
flow can be shown as long as it does not exceed 3 symbols.

Connectors are used to connect breaks in the flowchart.

Examples are: (i) From one page to another page.

(ii) From the bottom of the page to the top of the same page.

(iii) An upward flow of more then 3 symbols

Dept. of CSE Prepared by Chetna Singh

VVVYV V VY

SA=NCI General Rules for flowcharting

“WORKING TOWARDS BEING THE BEST’

Subroutines and Interrupt programs have their own and independent
flowcharts.

All flow charts start with a Terminal or Predefined Process (for interrupt
programs or subroutines) symbol.

All flowcharts end with a terminal or a contentious loop.

Flowcharting uses symbols that have been in use for a number of years to
represent the type of operations and/or processes being performed.

vV WV 'V

Dept. of CSE Prepared by Chetna Singh

J “ .
G Complexity

» Algorithmic complexity is a measure of how long an algorithm would
take to complete given an input of size n.

» If an algorithm has to scale, it should compute the result within a finite
and practical time bound even for large values of n

» While complexity is usually in terms of time, sometimes complexity is

also analyzed in terms of space, which translates to the algorithm's
memory requirements.

» Algorithms are of two types
» 1. Space Complexity 2. Time Complexity

Dept. of CSE Prepared by Chetna Singh

A=NCl Complexity

“WORKING TOWARDS BEING THE BEST”

1. Space Complexity: It is the amount of memory which is needed by the algorithm
(program) to run to completion. We can measure the space by finding out that
how much memory will be consumed by the instructions and by the variables
used.

Suppose we want to add two integer numbers. To solve this problem we have
following two algorithms:

Algorithm 1: Algorithm 2:

Step 1- Input A. Step 1- Input A.

Step 2- Input B. Step 2- Input B.

Step 3- Set C: = A+ B. Step 3- Write: ‘Sum is ‘, A+B.
Step 4- Write: ‘Sum is ‘, C. Step 4- Exit.

Step 5- Exit.

Dept. of CSE Prepared by Chetna Singh

gLrew Complexity

_{Group oF coLLEGES
“WORKING TOWARDS BEING THE BEST”

Both algorithms will produce the same result. But first takes 6

bytes and second takes 4 bytes (2 bytes for each integer). And
first has more instructions than the second one. So we will
choose the second one as it takes less space than the first one.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X{ GROUP OF COLLEGES T . .
“WORKING TOWARDS BEING THE BEST” I m e CO m p I EXIty
» Itis the amount of time which is needed by the algorithm (program) to run to
completion.

» We can measure the time by finding out the compilation time and run time.
The compilation time is the time which is taken by the compiler to compile
the program.

» This time is not under the control of programmer. It depends on the compiler
and differs from compiler to compiler.

» One compiler can take less time than other compiler to compile the same
program. So we ignore the compilation time and only consider the run time.

» The run time is the time which is taken to execute the program. We can
measure the run time on the basis of number of instructions in the
algorithm.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK GROUP OF COLLEGE§

Aoy i Time Complexity

E.g.
Suppose we want to add two integer numbers. To solve this problem we
have following two algorithms:

Algorithm 1: Algorithm 2:

Step 1- Input A. Step 1- Input A.

Step 2- Input B. Step 2- Input B.

Step 3- Set C: = A+ B. Step 3- Write: ‘Sum 1s ¢, A+B.
Step 4- Write: ‘Sum is *, C. Step 4- Exit.

Step 5- Exit.

Suppose 1 second 1s required to execute one instruction. So the first
algorithm will take 4 seconds and the second algorithm will take 3 seconds
for execution. So we will choose the second one as it will take less time.

Dept. of CSE Prepared by Chetna Singh

A=NCl Program

“WORKING TOWARDS BEING THE BEST”

» A program is a set of instructions given to a computer to perform a specific
operation.

» While executing the program, raw data is processed into a desired output
format. These computer programs are written in a programming language
which are high level languages.

» The computer only understands binary language (the language of 0’s and 1's)
also called machine-understandable language or low-level language but the
programs we are going to write are in a high-level language which is almost
similar to human language.

» Like we have different languages to communicate with each other, likewise,
we have different languages like C, C++, C#, Java, python, etc to communicate
with the computers.

Dept. of CSE Prepared by Chetna Singh

ALneIr Programing Languages

“WORKING TOWARDS BEING THE BEST”

» Types of Programming Languages

There are two types of programming languages, which can be categorized into the
following ways:

1. Low level language
a) Machine language (1GL)
b) Assembly language (2GL)
2. High level language
a) Procedural-Oriented language (3GL)
b) Problem-Oriented language (4GL)
c) Natural language (5GL)

Dept. of CSE Prepared by Chetna Singh

ALneIr Programing Languages

“WORKING TOWARDS BEING THE BEST”

»Low level language: This language is the most understandable language used by
computer to perform its operations. It can be further categorized into:

» Machine Language (1GL): Machine language consists of strings of binary numbers (i.e. Os and
1s) and it is the only one language, the processor directly understands. Machine language has
an Merits of very fast execution speed and efficient use of primary memory.

» Merits: It is directly understood by the processor so has faster execution time since the
programs written in this language need not to be translated. It doesn’t need larger memory.

» Demerits: It is very difficult to program using 1GL since all the instructions are to be
represented by Os and 1s.

» Use of this language makes programming time consuming.
» |t is difficult to find error and to debug.
» It can be used by experts only.

Dept. of CSE Prepared by Chetna Singh

AENE Programing Languages

“WORKING TOWARDS BEIN

» Assembly Language: Assembly language is also known as low-level language
because to design a program programmer requires detailed knowledge of
hardware specification. This language uses mnemonics code (symbolic
operation code like ‘ADD’ for addition) in place of Os and 1s. The program is
converted into machine code by assembler. The resulting program is reffered to
as an object code.

»Merits: It is makes programming easier than 1GL since it uses mnemonics code
for programming. Eg: ADD for addition, SUB for subtraction, DIV for division, etc.

» It makes programming process faster.
» Error can be identified much easily compared to 1GL.

>t is easier to debug than machine language.

Dept. of CSE Prepared by Chetna Singh

ALneIr Programing Languages

“WORKING TOWARDS BEING THE BEST”

»Demerits: Programs written in this language is not directly understandable by
computer so translators should be used.

»It is hardware dependent language so programmers are forced to think in
terms of computer’s architecture rather than to the problem being solved.

»Being machine dependent language, programs written in this language are
very less or not portable.

»Programmers must know its mnemonics codes to perform any task.

Dept. of CSE Prepared by Chetna Singh

AeNCT High level language

» A high-level language is a programming language that is designed to be easily
understood and written by humans.

» Its syntax and structure are closer to human language (like English) and
mathematical notation, rather than the machine language (binary 1s and Os)
that a computer's CPU understands directly.

A\

Key Characteristics:

A\

Readability: The code 1s in-built and uses familiar words (e.g., if, while,
print).

» Abstraction: It abstracts away the complex, low-level details of the
computer's hardware, such as memory management and register allocation.
You don't need to think about where 1n memory a variable 1s stored.

Dept. of CSE Prepared by Chetna Singh

A=NCl High level language

“WORKING TOWARDS BEING THE BEST”

»> Portability: Code written in a high-level language can, in theory, run on different
types of computers with minimal changes. This 1s achieved by using compilers or
interpreters specific to each machine.

»> Ease of Use: It requires less code to perform complex operations, significantly
increasing developer productivity.

» Translation Process: Since a CPU can only execute machine code, code written
in a high-level language must be translated. This 1s done by one of two programs:

» Compiler: Translates the entire source code into machine code (an executable file)
before the program 1s run (e.g., C++, Rust).

> Interpreter: Translates and executes the source code line-by-line at runtime (e.g.,
Python, JavaScript). (Note: Modern languages often use a mix, like compiling to
bytecode first).

Dept. of CSE Prepared by Chetna Singh

A5 High level language Types

» High-level languages are often categorized by their programming
paradigm—the fundamental style and approach to structuring the code and
solving problems. Many modern languages support multiple paradigms.

A\

Procedural Programming: This paradigm organizes code into procedures
(also known as functions or subroutines). The program follows a sequential
step-by-step list of instructions, calling procedures as needed.

Focus: "What are the steps to solve the problem?"
Key Concepts: Functions, procedures, sequential execution.
Examples: C, Pascal, Fortran, Go.

YV V V V

Analogy: A recipe for baking a cake. It's a list of instructions to follow in
order.

Dept. of CSE Prepared by Chetna Singh

A5 High level language Types

» Object-Oriented Programming (OOP)

This paradigm organizes code around "objects," which are instances of
"classes." These objects contain data (attributes) and methods (functions) that
operate on the data. It's excellent for modeling real-world systems.

A\

Focus: "What are the objects involved and how do they interact?"
Key Concepts: Classes, Objects, Inheritance, Encapsulation, Polymorphism.
Examples: Java, C++, Python, C#, Ruby.

Analogy: Building a car. You create objects like Engine, Wheel, and Door.
Each object has its own properties and functions, and they interact with each
other.

Dept. of CSE Prepared by Chetna Singh

YV V V VY

A5 High level language Types

» Scripting Languages: These are often a subset of procedural languages
designed for writing short, fast scripts to automate tasks, glue together
components, or for web development. They are typically interpreted.

A\

Focus: Automating tasks and rapid development.

A\

Key Concepts: Dynamically typed, interpreted, high-level abstractions for
specific tasks (e.g., web, system admin)

» Examples: Python, JavaScript, PHP, Ruby, Perl, Bash.

Dept. of CSE Prepared by Chetna Singh

A5 High level language Types

» Multi-Paradigm Languages: Most modern languages are designed to
support more than one paradigm, giving developers flexibility.

Examples:
Python: Supports procedural, object-oriented, and functional programming.

C++: Supports procedural, object-oriented, and generic programming.

V.V V VY

JavaScript: Supports procedural, object-oriented (prototype-based), and
functional programming.

A\

Scala: Combines object-oriented and functional programming seamlessly.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A AGROUP OF COLLEGES
“WORKING TOWARDS BEING THE ”

Feature
Core Approach

Program Structure

Data & Function Relationship

Core Principles

Data Security

OOP Vs POP

Object-Oriented Programming (OOP)

Programs are built
around objects and data.

Bottom-Up: Design the objects first, then
how they interact.

Tightly Coupled: Data and functions
(methods) are bound together in objects.

Abstraction, Encapsulation,
Inheritance, Polymorphism.

High (via Encapsulation): Data is
often private and can only be accessed
through methods.

Procedural-Oriented Programming
(POP)

Programs are built
around functions and procedures.

Top-Down: Break the main problem into
smaller sub-procedures.

Loosely Coupled: Data and functions are
separate entities.

Not formally defined. Relies on
sequencing, selection, and iteration.

Low: Data is typically global and
accessible throughout the program,
leading to potential insecurity.

Dept. of CSE Prepared by Chetna Singh

@ B Sm
st OOP Vs POP

“WORKING TOWARDS BEING THE

Feature Object-Oriented Programming (OOP) Procedural-Oriented Programming (POP)

High (via Inheritance & Composition):
Code Reusability New classes can inherit properties and
methods from existing ones.

Moderate: Reusability i1s achieved by calling
functions from different parts of the program.

Easy: Changes can be isolated within Difficult: A change in a data structure may
Ease of Modification objects. Adding new features often doesn't require modifying all the functions that access

break existing code. it.

Large, complex, and frequently updated Smaller, simpler, or performance-critical tasks
Suitable For systems (e.g., GUI apps, simulation games, (e.g., system utilities, mathematical

enterprise software). calculations, scripts).

Models the "real-world" entities and their = Models the "procedure" or steps to solve the
interactions. problem.

Example Languages Java, C++, Python, C#, Ruby C, Pascal, Fortran, BASIC, Go

Dept. of CSE Prepared by Chetna Singh

Problem Solving View

A=05E Introduction to C++

>

>

C++ 1s a general-purpose, object-oriented programming language developed
by Bjarne Stroustrup in 1979 as an extension of the C language.

C++ 1s a middle-level programming language that combines the features of
procedural programming (from C) and object-oriented programming (OOP).

It allows developers to write efficient, low-level system programs as well as
high-level applications with concepts like classes, inheritance, polymorphism,
and abstraction.

C++ 1s a middle-level programming language developed by Bjarne Stroustrup
starting 1n 1979 at Bell Labs.

C++ is an object-oriented programming language which gives a clear
structure to programs and allows code to be reused, lowering development
COSts.

Dept. of CSE Preprarid by Cleahia fhipigh

A=05E Introduction to C++

>

Simple: C++ 1s a simple language 1n the sense that it provides structured
approach (to break the problem into parts), rich set of library functions, data
types etc.

Machine Independent or Portable: Unlike assembly language, ¢ programs can
be executed in many machines with little bit or no change. But it 1s not
platform-independent.

Mid-level programming language: C++ 1s also used to do low level
programming. It is used to develop system applications such as kernel, driver
etc. It also supports the feature of high level language. That 1s why it is
known as mid-level language.

Structured programming language: C++ 1s a structured programming
language 1n the sense that we can break the program into parts using

Dept. of CSFE Prepared by Chetna Singh

£oer
“Iftroduction to C++

Portable

Simple

Memory
Management

Extensible

Faster

Dept. of CSE Prepared by Chetna Singh

Mid-Level

A

C++ Features

Y

Compiler Based

Structured

Rich Library

Object
Oriented

Recursion

Pointers

-
“fitFéduction to C++

» Memory Management: It supports the feature of dynamic memory allocation. In C++
language, we can free the allocated memory at any time by calling the free() function.

»Speed: The compilation and execution time of C++ language is fast.

» Pointer: C++ provides the feature of pointers. We can directly interact with the memory
by using the pointers. We can use pointers for memory, structures, functions, array etc.

» Recursion: In C++, we can call the function within the function. It provides code
reusability for every function.

» Extensible: C++ language is extensible because it can easily adopt new features.

» Object Oriented: C++ is object oriented programming language. OOPs makes
development and maintenance easier where as in Procedure-oriented programming
language it is not easy to manage if code grows as project size grows.

» Compiler based: C++ is a compiler based programming language, it means without
compilation no C++ program can be executed.

Dept. of CSE Prepared by Chetna Singh

C

C++

C follows the procedural style programming.

C++ 1s multi-paradigm. It supports both procedural and
object oriented.

Data 1s less secured in C.

In C++, you can use modifiers for class members to
make it inaccessible for outside users.

C follows the top-down approach.

C++ follows the bottom-up approach.

C does not support function overloading.

C++ supports function overloading.

In C, you can't use functions in structure.

In C++, you can use functions in structure.

C does not support reference variables.

C++ supports reference variables.

In C, scanf() and printf() are mainly used for
input/output.

C++ mainly uses stream cin and cout to perform input
and output operations.

Operator overloading is not possible in C.

Operator overloading is possible in C++.

C programs are divided into procedures and modules

C++ programs are divided into functions and classes.

C does not provide the feature of namespace.

C++ supports the feature of namespace.

Exception handling 1s not easy in C. It has to perform
using other functions.

C++ provides exception handling using Try and Catch
block.

C does not support the inheritance.

C++ supports inheritance.

Dept. of CSE Prepared by Chetna Singh

AeNCT C++ Character Set

» Analogy: Just like the English language uses letters (A-Z), digits (0-9), and
symbols (., !, ?), C++ has its own set of valid characters that 1t understands.

» These are the characters you are allowed to use to write your C++ code:

A\

Letters: Both uppercase (A-Z) and lowercase (a-z). C++ 1s case-sensitive
(age 1s different from Age).

> Digits: 0 to 9.

Dept. of CSE Prepared by Chetna Singh

AeNCT C++ Character Set

» Special Symbols: These are the punctuation marks of C++. The most
common ones you'll see are:

F-F =% &AI?A A <>0O) [Ty, T

» White Spaces: Spaces, tabs (\t), newlines (\n). The compiler mostly ignores
these, but they are crucial for making your code readable.

» Key Takeaway: You must write your code using only these characters. Using
a curly quote “ instead of a straight quote " or a symbol like $ in the wrong
place will cause an error.

Dept. of CSE Prepared by Chetna Singh

AeNCT C++ Character Set

» Special Symbols: These are the punctuation marks of C++. The most
common ones you'll see are:

F-F =% &AI?A A <>0O) [Ty, T

» White Spaces: Spaces, tabs (\t), newlines (\n). The compiler mostly ignores
these, but they are crucial for making your code readable.

» Key Takeaway: You must write your code using only these characters. Using
a curly quote “ instead of a straight quote " or a symbol like $ in the wrong
place will cause an error.

Dept. of CSE Prepared by Chetna Singh

AeNC T Tokens

“WORKING TOWARDS BEING THE BEST’

» Tokens are the individual words and punctuation marks.
» They are the smallest meaningful elements that the compiler can understand.

» When you write a line of code, the compiler breaks it down into tokens before
analysing. The main types of tokens are:

Keywords

vV Z

It 1s predefined reserve words.

A\

These are reserved words that have a special, fixed meaning in C++. You
cannot use them as variable names. Examples:

» 1nt, float, double, char, void, if, else, for, while, do, return, class, public,
private, namespace etc.

Dept. of CSE Prepared by Chetna Singh

SA=NCT Tokens

“WORKING TOWARDS BEING THE BEST’

2) Identifiers

» These are names given by the programmer to various program elements like
variables, functions, classes, etc.

Rules for naming i1dentifiers:

Must start with a letter (a-z, A-Z) or an underscore ().
Cannot be a keyword.

Case-sensitive.

Good identifiers: totalSum, count, player2, calculateArea

YV V V VYV VY

Bad identifiers: 2player (starts with digit), float (is a keyword), total sum (has
a space between)

Dept. of CSE Prepared by Chetna Singh

P
Aen S, Tokens

3) Literals/Constants

» These are fixed values that don't change during execution. They are literally
what you write.

A\

Literals are the actual values that are directly written 1n the code to represent
specific data. They are used to provide 1nitial values for variables.

Integer Literals: 10, -5, 0
Floating-point Literals: 3.14, -0.5, 2.0

Character Literals: 'A’, 'Z', '$' (must be in single quotes)

V.V V VY

String Literals: "Hello World" (must be in double quotes)

Dept. of CSE Prepared by Chetna Singh

ALNe Tokens

“WORKING TOWARDS BEING THE BEST”

4) Operators

» Symbols that perform an operation on one or more operands (values).
» Arithmetic: +, -, *, /, % (modulus - gives remainder)

» Relational: >, <, ==, |=, >=, <= (check conditions)

» Assignment: = (assigns a value)

Dept. of CSE Prepared by Chetna Singh

P
Sl Tokens

5) Punctuators/Separators

Special Symbols used to structure the code.

Semicolon ;: Acts like a full stop. It marks the end of a statement.
int age = 25, // Statement ends here

VV V VY

Curly Braces { }: Used to group a block of code (e.g., for a function or a
loop).

A\

Parentheses (): Used after function names and in expressions.

Dept. of CSE Prepared by Chetna Singh

‘ w
SC Comment

Can use C form of comments /* A Comment */
Can also use // form:

when // encountered, remainder of line 1ignored
It works only on that line.

Examples:

int I; // One Line Comment

V.V V VYV V YV V

char C; /* Multiline comment */

Dept. of CSE Prepared by Chetna Singh

A55EX Precedence and Associativity

» Remember BODMAS/BIDMAS/PEMDAS from math?

» 5+ 2 * 3 1s 11, not 21, because multiplication (*) has a higher precedence
than addition (+). C++ has the same rules!

» Precedence: Which operator is evaluated first in an expression with multiple
different operators.

» Associativity: If two operators have the same precedence, which one is
evaluated first? Left-to-right (most common) or right-to-left (e.g., assignment

=).

Dept. of CSE Prepared by Chetna Singh

SM

A55EX Precedence and Associativity

Simple Example:

int result=5+2 * 3;

* has higher precedence than +, so 2 * 3 1s done first -> 6.
Then 5 + 6 1s done -=> 11.

Finally, = assigns 11 to result.

VV V V VY

Pro Tip: When 1n doubt, use parentheses () to force the order you want! (5 +
2) * 3 will give 21. It makes your intention clear and your code safer.

Dept. of CSE Prepared by Chetna Singh

A=DC) Data Types

“WORKING TOWARDS BEING THE BEST”

» A data type specifies the type of data that a variable can store such as integer,
floating, character etc.

» Data types are like different types of containers. You wouldn't store water in a
cardboard box. Similarly, you use different data types to store different kinds

of data efficiently.
Data Type What it stores Example Size (approx.)
. 4 bytes
int Integers (whole numbers) 10, -5, 0 (Range — 32768 to 32767)
float Floating-point numbers (decimals) 3.14, -10.5 4 bytes
double Double-precision decimals (more precise) 3.1415926535 8 bytes

Dept. of CSE Prepared by Chetna Singh

A=DNC I Data Types

“WORKING TOWARDS BEING THE BEST’

Data Type What it stores Example Size (approx.)

1 byte

. ' ' "' 190
char A single character AL'N'S (Range -128 to 127)

Boolean values
bool (true/false) true, false 1 byte

! | . Used for functions that
void Represents "no type e i N/A

Dept. of CSE Prepared by Chetna Singh

ALNCTIT DataTypes in C/ C++

_s{GrouP oF coLLEGES
|

“WORKING TOWARDS BEING THE BEST”

Primary Derived User Defined
—— Integer —— Function f— Class
Character Array Structure
—— Boolean —— Pointer f— Union
—— Floating Point —— Reference — Enum
—— Double Floating Point f— Typedef
— Void
— Wide Character

oG

b J

Dept. of CSE Prepared by Chetna Singh

denen Variables

“WORKING TOWARDS BEING THE BEST

» A variable 1s like a named box (the variable name) where you can store a
piece of data (the value). You can put things in the box, look at what's inside,
and change 1it.

A\

Declaration: Telling the compiler, "I need a box of this type and here's its
name."

int age;
Assignment: Putting a value into the box.
age = 23;

Initialization: Declaration and assignment in one step. (This 1s best practice!)
int score = 100; // or int score {100}; (modern C++)

Dept. of CSE Prepared by Chetna Singh

YV V V VYV V

Gl Program Structure

» Think of writing a C++ program like building a house. You need to follow a
specific plan.

» 1. The Foundation: The main() Function

» Every single C++ program must have one special room where everything
starts. This room 1s called the main() function.

» It's the front door. When you run your program, the computer always looks
for main() and starts executing the code inside it first.

int main() {
// Your instructions go here!

return 0;

Dept. of CSE Prepared by Chetna Singh

Gl Program Structure

» int main(): This is the name and type of the function. Just memorize this for
now.

» { }: The curly braces mark the beginning and end of the main() room. All the
action happens between them.

» return 0;: This is the "all done!" signal to the computer. 0 means everything
finished successfully.

» 2. Getting Your Tools: #include Directives
» Before you can build anything, you need to get your tools out of the toolbox.
» #include is like opening a toolbox. It tells the computer, "Go get a set of

ready-made tools I need for this job."

Dept. of CSE Prepared by Chetna Singh

Gl Program Structure

» These tools are stored in header files (like <iostream>).
» 3. Giving Instructions: Statements

» Inside the main() function, you write the instructions, step-by-step. Each
instruction 1s called a statement.

» Every statement must end with a semicolon ;
> 4. The Grand Finale: Putting It All Together
» Let's build our simple "Hello Class" house using all these parts.

Dept. of CSE Prepared by Chetna Singh

“WORKING TOWARDS BEING THE BEST

AN Program Structure

» #include <iostream>

» using namespace std;

» int main() {

» cout << "Hello, Class!";

» return 0;
> |

Dept. of CSE Prepared by Chetna Singh

S=NENL Operators

“WORKING TOWARDS BEING THE BEST”

» Operators are special symbols that perform operations on variables and
values. Think of them like the basic math symbols you already know (+, -, X,
—) but with more capabilities.

» 1. Arithmetic Operators (For basic math)

Operator Example Same as
= X=5 X=5

+= X+=3 X=X+3
-= X -= X=X-2
*= X *= X=x*4
/= X /=2 X=x/2

Dept. of CSE Prepared by Chetna Singh

Gl Operators

Arithmetic Operators:

Used for mathematical calculations.
+ (Addition)

- (Subtraction)

* (Multiplication)

/ (D1vision)

% (Modulo - remainder of division)

++ (Increment)

VV VYV V VY V VYV V

-- (Decrement)

Dept. of CSE Prepared by Chetna Singh

ALNCTT

_{Group oF coLLEGES

“WORKING TOWARDS BEING THE BEST”

Operators

» Operators are symbols that instruct the compiler to perform specific
mathematical, relational, logical, or bitwise operations on operands.

» Assignment Operators (Giving values to variables)

Operator Example Same as
= Xx=5 X=3

+= X +=3 X=Xx+3
-= X -=2 X=X-2
* = X *=4 X=x%*4
/= X /=2 X=x/2

Dept. of CSE Prepared by Chetna Singh

Gl Operators

Assignment Operators:

Used to assign values to variables.
= (Simple assignment)

+= (Add and assign)

-= (Subtract and assign)

*= (Multiply and assign)

/= (D1vide and assign)

%= (Modulo and assign)

V.V VYV V V VYV

Dept. of CSE Prepared by Chetna Singh

A=DNC I Operators

“WORKING TOWARDS BEING THE BEST”

» Operators are fundamental to C++ programming, enabling data manipulation,
control flow, and complex computations.

» 3. Comparison Operators (Compare values - return TRUE or FALSE)

Operator Name Example Result
== Equal to 5== false
I= Not equal to 51=3 true
> Greater than 5>3 true
< Less than 5<3 false
>= Greater than or equal 5>=5 true
<= Less than or equal 5<=3 false

Dept. of CSE Prepared by Chetna Singh

{)
Gl Operators

A\

Relational (Comparison) Operators:

A\

Used to compare two operands and determine the relationship between them,
resulting in a boolean (true/false) value.

== (Equal to)

|= (Not equal to)
> (Greater than)
< (Less than)

>= (Qreater than or equal to)

YV V V VYV VY

<= (Less than or equal to)

Dept. of CSE Prepared by Chetna Singh

{)
Gl Operators

Logical Operators: Used to combine or modify boolean expressions.
&& (Logical AND)

| (Logical OR)

I (Logical NOT)

Bitwise Operators: Used to perform operations on individual bits of integer
operands.

& (Bitwise AND)
| (Bitwise OR)
<< (Left Shift)
>> (Right Shift)

Dept. of CSE Prepared by Chetna Singh

V.V V VYV V

YV V V V

ASNCT Ternary /Conditional Operator

Expression1 ? Expression2 : Expression3

» #include <iostream>

» using namespace std;

» int main() {

» Inta=3,b=4;

// Conditional Operator

intresult=(a<b)?b: a;

cout << "The greatest number "
"1s " << result;

return O;

;

Dept. of CSE Prepared by Chetna Singh

YV V V V V VY

A=NEY Expression

“WORKING TOWARDS BEING THE BEST”

» An expression is a combination of operators, operands to evaluates a single
value.

» An expression is a combination of operators, constants and variables. An

expression may consist of one or more operands, and zero or more
operators to produce a value.

result = a + b * ¢

[Operand 1 Oper:emd 3

Variable to store ! !
the expression value Operator 1 Operand 2 Operator 2

Dept. of CSE Prepared by Chetna Singh

A=NEY Expression

“WORKING TOWARDS BEING THE BEST”

Tyvpes of EXpressions

Constant integral
Expressions Expressions
Bitwise Types of Floating
Expressions Expressions Expressions
Pointer Logical Relational
Expressions |: Expressions] Expressions

Dept. of CSE Prepared by Chetna Singh

4 = °
Gl Expression

»Constant expressions: Constant Expressions consists of only
constant values. A constant value 1s one that doesn't change.
Expressions whose values can be determined at compile-time.

»Examples: 5, 'x’

»Integral expressions: Integral Expressions are those which produce
integer results after implementing all type conversions.

»Examples: x, x * y, where x and y are integer variables.

»Floating expressions: Float Expressions are which produce floating
point results after implementing all type conversions.

»Examples: x + y where x and y are floating point variables, 10.75

Dept. of CSE Prepared by Chetna Singh

4 = °
Gl Expression

»Relational expressions: Use relational operators (==, !=, >, <) to
compare two operands and produce a boolean result (true or false).

»Examples: x <=y, x +y>2

» Logical expressions: Combine two or more relational expressions
using logical operators (&& for AND, || for OR, ! for NOT) to produce
a boolean result.

»Examples: x>y && x==10,x =10 || y ==

» Pointer expressions: Pointer Expressions produce address values.
Examples: &Xx, ptr, ptr++

Dept. of CSE Prepared by Chetna Singh

4 = °
Gl Expression

> Bitwise expressions: Perform operations on data at the bit level using
bitwise operators (&, |,<<, >>).

» Bitwise Expressions are used to manipulate data at bit level. They are
basically used for testing or shifting bits.

»Examples:

»X << 3 (it shifts three bit position to left.)
»int shifted value =5 << 1;.

»shifts one bit position to right.

Dept. of CSE Prepared by Chetna Singh

ASNET Characteristics of Expression

» Expressions are formed by combining:
1. Operators: Symbols that perform operations (e.g., +, -, *, /, =, ==, &&, ||).

2. Operands: The values or variables on which operators act. These can be
constants (e.g., 5, 3.14, 'a'), variables (e.g., x, myVariable), or the return
values of function calls (e.g., sqrt(9)).

3. Evaluation: Expressions are evaluated to produce a result, which can be of
various data types (e.g., int, double, bool).

4. Side Effects: Some expressions can also cause "side effects," which are
actions beyond simply computing a value, such as modifying the value of a
variable (e.g., x =35; or 1++;§3.

S. Hierarchy: Expressions can be nested, meaning one expression can be part
of a larger expression. During evaluation, inner expressions are typically
computed first.

Dept. of CSE Prepared by Chetna Singh

‘ SM
Gl Statements

» A statement is a single instruction that performs an action.

»such as declaring a variable, assigning a value, or calling a function.
»Most statements end with a semicolon (;).

»Example:

»int x = 10; // Declaration and assignment statement

»cout << "Hello"; // Output statement

»return O; // Return statement

Dept. of CSE Prepared by Chetna Singh

P Control Structure

» Control structures manage the flow of execution within a program.

»>1t enable decision-making, repetition, and jumping between different
parts of the code.

1. Selection (Decision-Making) Statements: These execute specific
blocks of code based on conditions.

2. Iteration (Looping) Statements: These repeatedly execute a block of

code.
3. Jump Statements: These alter the normal flow of control
unconditionally.

Dept. of CSE Prepared by Chetna Singh

ANiETSelection (Decision-Making) Statements

» These execute specific blocks of code based on conditions.
1. if statement: Executes a block of code 1f a condition 1s true.
Example:
if (age >= 18)
d

cout << "Eligible to vote.";

Dept. of CSE Prepared by Chetna Singh

M

A5E X Selection (Decision-Making) Statements

» These execute specific blocks of code based on conditions.

2. if-else statement: Executes 1f block (first block) when a condition 1s
true, and executes else block (another block) when condition is false.

if (score > 90)
d

cout << "Excellent!";

h

else {
cout << "Keep practicing.";

h

Dept. of CSE Prepared by Chetna Singh

SM

A5E X Selection (Decision-Making) Statements

» These execute specific blocks of code based on conditions.
3. if-else if-else ladder: Checks multiple conditions sequentially.
Example:
if (grade =="A") { /* ... ¥/ }
else if (grade =="B") { /* ... ¥/ }
else { /* ... */ }

Dept. of CSE Prepared by Chetna Singh

AsNCTSelection (Decision-Making) Statements

» These execute specific blocks of code based on conditions.

3. switch statement: Selects one of many code blocks to execute based
on the value of an expression.

Example: int day =1;

switch (day) {
case 1: cout << "Monday"; break;
case 2: cout << "Tuesday"; break;

default: cout << "Invalid day";

)

Dept. of CSE Prepared by Chetna Singh

A55EX Tteration (Looping) Statements

» Control structures manage the flow of execution within a program.
» These repeatedly execute a block of code.

1. for loop: Repeats a block of code a specific number of times, with
initialization, condition, and increment/decrement.

Example:
for (int1=0;1<35; 1++)

d

cout << <<""

)

Dept. of CSE Prepared by Chetna Singh

A55EX Tteration (Looping) Statements

2. while loop: Repeats a block of code as long as a condition remains
true (entry-controlled).

Example:

int count = 0;

while (count <35)

{
cout << "Looping...";
count+-+;

)

Dept. of CSE Prepared by Chetna Singh

A55EX Tteration (Looping) Statements

3. do-while loop: Repeats a block of code at least once, then continues as
long as a condition remains true (exit-controlled).

Example:

int 1= 0;

do {
cout << 1;
1++;

h
while (1 <0);
// Executes once even 1f condition 1s false

Dept. of CSE Prepared by Chetna Singh

Gl Jump Statements

» It manage the flow of execution within a program.
» These alter the normal flow of control unconditionally.
1. break statement: Terminates the innermost loop or switch statement.

2. continue statement: Skips the rest of the current iteration of a loop
and proceeds to the next iteration.

3. goto statement: Transfers control to a labeled statement within the
same function (generally discouraged due to potential for unstructured
code).

4. return statement: Exits a function and optionally returns a value.

Dept. of CSE Prepared by Chetna Singh

AEDNET I/0 Operations

»(C++ utilizes a stream-based approach for Input/Output (I/O) operations,
treating data as a sequence of bytes flowing between a program and
external devices like the keyboard, screen, or files.

» The core of C++ I/O lies in the <iostream> header file and its associated
classes.

» Standard I/O Streams: (cin & cout)

»Input Stream: If the direction of flow of bytes is from the device (for
example, Keyboard) to the main memory then this process 1s called input.

»Output Stream: If the direction of flow of bytes is opposite, i.e. from
main memory to device (display screen) then this process 1s called
output.

Dept. of CSE Prepared by Chetna Singh

Gl Standard I/O Streams

»cin (Standard Input Stream): This object, an instance of the istream
class.

»1It 1s used to read input from the standard input device, typically the
keyboard.

» The extraction operator (>>) 1s used with cin to extract data and store it
in variables.

»(C++ utilizes a stream-based approach for Input/Output (I/O) operations,
treating data as a sequence of bytes flowing between a program and
external devices like the keyboard, screen, or files.

» The core of C++ I/O lies in the <iostream> header file and its associated
classes.

Dept. of CSE Prepared by Chetna Singh

L= EN Standard I Stream- cin

1. cin (Standard Input Stream):
#include <iostream>
using namespace std;
int main() {
Int num;
cout << "Enter an integer: ";
cin >> num; // Reads an integer from the keyboard

return O;

)

Dept. of CSE Prepared by Chetna Singh

Ad=Nel Standard O Streams- cout

“WORKING TOWARDS BEING THE BEST

»cout (Standard Output Stream): This object, an instance of the ostream class.

»>1t is used to display output to the standard output device, typically the console

screen.
»The insertion operator (<<) is used with cout to insert data into the stream for
display.
#include <iostream>
int main()
d

std::cout << “Your Name " << std::endl;

return O;

Dept. of CSE Prepared by Chetna Singh

AN cerr

“WORKING TOWARDS BEING THE BEST”

»cerr (Standard Error Stream): An unbuffered ostream used for displaying
error messages.

> Un-buffered Standard Error Stream - cerr.
>t is also an instance of the iostream class.

> it is used when one needs to display the error message immediately. It does
not have any buffer to store the error message and display it later.

#include <iostream>

using namespace std;

int main() {
cerr << "An error occurred";
return O;

}

Dept. of CSE Prepared by Chetna Singh

A5 X clog (Standard Log Stream)

»clog (Standard Log Stream): A buffered ostream used for displaying log
messages.

> This is also an instance of ostream class.
>t is used to display errors.

>t is stored in the buffer until it is not fully filled. or the buffer is not explicitly
flushed (using flush()). The error message will be displayed on the screen too.

#include <iostream>

using namespace std;

int main() {
clog <<"An error occurred";
return O;

b

Dept. of CSE Prepared by Chetna Singh

SM
SUNCTIT A
4Group oF coLLEGES r r a y
“WORKING TOWARDS BEING THE BEST”

»An array 1s a collection of same type eclements in contiguous memory
locations.

» It allows you to store multiple values under a single name and access them
using an index.

»An array is a data structure used to store std::vector (dynamic size) and
std::array (fixed-size)

»Elements of Array are accessed using an index, starting from 0.
»Fixed Size: arrays have a fixed size determined at compile time.
»Zero-based indexing: Array indices always start from O.

»Bounds Checking: bounds checking means accessing an index outside
the declared range can lead to undefined behavior (e.g., crashes or

corrupted data).
Dept. of CSE Prepared by Chetna Singh

ASNET Array Declaration and Initialization

» Arrays must be declared with a specific data type, a name, and a size
(number of elements).

»The size must be a constant expression, meaning it can be an integer
literal or a const variable.

»// Declare an array of 5 integers

int num|5];
»// Declare and initialize an array with values

int score[] = {83, 90, 78, 92, 88};
»// Declare and initialize an array with a specified size

char letter[3] = {'a', 'b', 'c'};

Dept. of CSE Prepared by Chetna Singh

Gl Array Accessing Elements

»Elements in an array are accessed using their index within square
brackets [].

» The first element 1s at index 0, the second at index 1, and so on.
int Num([3] = {10, 20, 30};

» // Accessing the first element (value 10) - index no. — [0]
int first = Num|[O0];

» // Modifying the second element - index no. — [1]
Num|[1] = 25;

Dept. of CSE Prepared by Chetna Singh

ADCT Types of Arrays

“WORKING TOWARDS BEING THE BEST”

Types of Arrays

|’ ' |
On the basis of On the bo_sis of
Size Dimensions

| [|

Fixed Dynamic ~ One- ~ Multi-
Size Size Dimensional Dimensional

Array Array

5|
Two-Dimensional Array Three-Dimensional Array ... and so on

Dept. of CSE Prepared by Chetna Singh

Gl Types of Arrays

Arrays can be broadly categorized by their number of dimensions.

1. One-dimensional arrays(1-D)-Linear data

2. Multidimensional arrays —(N-D)-cubes or block-like structures
(Two-dimensional arrays- (2-D)-Row-Column Matrix)

1. Fixed Size Array - Memory 1s allocated at compile time

2. Dynamic Sized Array - Memory 1s allocated dynamically,

Index — 0 1 2 3 4 5

Element—r[5 1 10 I 20 I 25 I 30 I 35]

SM

455X One-Dimensional Arrays (1D Arrays)

> Allinear collection of elements, often conceptualized as a single row or
column.

It 1s linear collection of elements, like a list.
Each element is accessed by a single index.
one-dimensional arrays used to store linear data.
Example:
int numbers[5] = {10, 20, 30, 40, 50};
// An array of 5 integers

VYV VYV V

int thirdElement = numbers[2];

// Accessing the third element (index 2)
cout<< thirdElement;

// thirdElement will be 30

Dept. of CSE Prepared by Chetna Singh

SM

A55E X Two-Dimensional Arrays (2D Arrays)

» An array of arrays, often visualized as a grid or matrix with rows and
columns. Elements are accessed using two indices: one for the row and one
for the column.

» 2D array used to hold data of row-column matrix.
» An array of arrays, commonly used for representing grids or tables.
> Example:

int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

// A 2x3 matrix

int element = matrix[1][2];

// Accessing the element in the second row (index 1) and third column
(index 2)

cout<<element;
// element will be 6

Dept. of CSE Prepared by Chetna Singh

SM

A55EXMulti-Dimensional Arrays (2D Arrays)

- ”

» Arrays with more than two dimensions (e.g., 3D, 4D).

» Used for representing complex data structures like cubes or higher-
dimensional spaces.

» An array composed of two-dimensional arrays, often visualized as a
cube-like structure.

Example 3D Array:
int cube[2][2][2] = {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}};

// A 2x2x2 cube
// Accessing an element within the cube
int value = cube[1][0][1];

// value will be 6

Dept. of CSE Prepared by Chetna Singh

AeNCT Fixed Size Array

» These arrays have a predetermined size that cannot be changed after
declaration.

Fixed-Size Arrays have a size that 1s determined at the time of
declaration and remains constant throughout the program's execution.

>
» Memory is allocated at compile time, and their size cannot be changed
later.

>

Example:
// declares an array arr that can hold exactly 5 integer elements
int arr[5];
// Another way (creation and 1nitialization both)
int arr2[5] = {1, 2, 3,4, 5};

Dept. of CSE Prepared by Chetna Singh

“WORKING TOWARDS BEING THE BEST’

AT Dynamic Size Array

» These arrays can change their size during program execution(runtime),
allowing for more flexible storage.

» Memory is allocated dynamically, allowing elements to be added or removed
as needed.

» The size of the array changes as per user requirements during execution of
code so the coders do not have to worry about sizes. They can add and
removed the elements as per the need.

The memory 1s dynamically allocated and de-allocated 1n these arrays.
std::vector are examples of dynamic arrays that can automatically resize.
#include<vector> // Dynamic Integer Array

YV V V V

vector<int> v;

Dept. of CSE Prepared by Chetna Singh

‘WORKING TOWARDS BEIN!

=D Dynamic Size Array

#include <iostream> for (int i = 0; i < n; ++1)

#include <vector> {

using namespace std; ?ynamicArray[i] =1*10;

int main() cout << "FElements: ";

d | for (int val : dynamicArray)
Int n; {

cout << "Enter array size: "; cout << val <<"";

cin >> n;)

vector<int> dynamicArray(n); cout <<endl; return 0;;

Dept. of CSE Prepared by Chetna Singh

4 = o
A=DCN Function

»A function is a block of organized, reusable code that designed to
performs a specific task.

» A function is a block of code which only runs when it is called.
»You can pass data, known as parameters, into a function.
» Functions used to perform certain actions

» It 1s reusable blocks of code. Define the code once in function, and use it
many times.

»Functions can take inputs (parameters), execute a block of statements,
and optionally return a result.

» Function improve code readability, modularity, and reusability.

Dept. of CSE Prepared by Chetna Singh

Gl Function Syntax

Function Return Type Function Name(Function Parameters)

d

// code to be executed
h
» // Declaration- void add();
»//Definition- void add() { cout<<a + b; }

»//call- add();

1. Function Declaration(function prototype) introduces the function to
the compiler. informs the compiler about the function's existence.

// Declaration- void add();

Dept. of CSE Prepared by Chetna Singh

4 = °
Gl Function

2. Function Definition provides the actual implementation. its name, and
the types and order of its parameters.

Definition- void add() { cout<<a + b; }

3. Parameters(variable) and Arguments(values):
»Parameters are placeholders in the function definition. Ex. int a

» Arguments are actual values passed during function calls.

Dept. of CSE Prepared by Chetna Singh

ALNCTT
A}X‘ GROUP OF COLLEGES °
“WORKING TOWARDS BEING THE BEST” I yp e S O f I ‘ Iu n c tl O] S

1. Library Functions: These are built-in functions provided by C++ standard
libraries, such as cout, sqgrt().

»You can use them by including appropriate headers like <iostream>,
<cmath>, or <string>.

#include <iostream> // Required for input/output
#include <cmath> // Required for mathematical function sqrt
using namespace std;

int main() {

float number = 25.0;

float SR = sqrt(numbert); // Calculates square root

cout << "Square root of " <<number << " 1s: " << SR;

return 0;

j

Dept. of CSE Prepared by Chetna Singh

ALNCTT

_{Group oF coLLEGES
“WORKING TOWARDS BEING THE BEST”

Library Functions-Ex-2

#tinclude <iostream>

#tinclude <cmath> // Required for mathematical function pow

using namespace std;

int main() {

float base = 2.0;

float exponent = 3.0;

float p = pow(base, exponent); // Calculates power (base”exponent)
cout << base << " raised to the power of " << exponent << " is: " << p;
return O;

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

smmssd® Library Functions-Ex-3

#include <iostream>

#tinclude <algorithm> // Required for min, max functions
using namespace std;

int main() {
inta =10;
int b = 20;

int minimum = min(a, b); // Finds the smaller of two values

int maximum = max(a, b); // Finds the larger of two values

cout << "Minimum of "<<a<<"and " << b << "is: " << minimum << endl;
cout << "Maximum of " <<a<<"and " << b << "is: " << maximum << endl;
return O;

}

Dept. of CSE Prepared by Chetna Singh

o s lerary Functions-Ex-4
#tinclude <iostream> // 2. append() function
#include <string> string result2 = strl;
// Required for string functions result2.append(str2);
using namespace std; cout << "Concatenation using
int main() { append(): " << result2 << end];

string strl = "Hello, ";
string str2 = "your name": // 3. length() or size() function

cout << "Length of str2: " <<
str2.length() << endl; // or str3.size()

return O;

// 1. Concatenation using + operator
string resultl = strl + str2;

cout << "Concatenation using +: " << \
resultl << endl;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

N/
AM GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

User Defined Functions

User defined functions are based on input and return type.

1. No parameters, no return value: The function performs a task but
does not take input or return anything.

2. Parameters, no return value: The function takes input but does not
return a result.

3. No parameters, return value: The function returns a result but does
not take any input.

4. Parameters and return value: The function takes input and returns
a result.

Dept. of CSE Prepared by Chetna Singh

A=nC M unction-1. No parameters, no return value

BEST

#include <iostream>
Using namespace std;

// Create a function
void Fun()

d

cout << “Function Executed!";

)

int main()

d

Fun(); // call the function
return O;

)

Dept. of CSE Prepared by Chetna Singh

Function-1. No parameters, no return value

»Example 2:
#tinclude <iostream>
using namespace std;
// Function

void Hello()

{

cout << “Hello class!“;

cout<<endl;

}

int main()

{
Hello(); // Calling the function

return O;

}

Function-2. parameters, no return value

#include <iostream>
using namespace std;
vold Sum(int nl, int n2)
d

int sum =nl + n2;

cout << "The sum 1s: " << sum <<
endl;

h

lint main()

d

int a = 60;
int b = 55;
Sum(a, b);

different values

return O;

h

// fun call with
Sum(20, 7);

Function-3. no parameters, return value

#include <iostream>
using namespace std;

// Function definition: no parameters, return value

int get()
d

// This function returns a integer value

return 42;

lint main()

d
// Call the function

int result = get();
// Display the returned value

cout << "The number returned by
the function 1s: " << result;

return O;

Function-4. parameters, return value

#include <iostream>
using namespace std;

// Function definition: parameters, return value

int add(int a, int b)
d

Int sum = a + b;

return sum; // Return

j

lint main()

{
intnl =75;
intn2 = 57;

int sum = add(nl, n2);

cout << "The sum of " << nl << " and "
<<n2 <<"i1s: " << sum;

return O;

h

More than one Function

»Example: int main()
#include <iostream>

using namespace std; {
// Function1 Hello(); // Calling functionl
void Hello()
{ int result = square(5);
cout << “Hello Your Name!" << end|;
) // Calling the square function?2
// Function2 cout << "Square of 5is: " << result << end|;
int square(int num) return O:
{
}

return num * num;

}

Function Syntax

»Example: cout << "The sum is: " << sum << end|;
#include <iostream>

, return O;

using namespace std; \

// Function declaration
(prototype) . // Function definition
int add(mt a, int b); int add(int a, int b)
int main()
{ {
int num1 = 10; return a + b; // Returns the sum of a and
Int num2 = 20; b

// Calling function

int sum = add(num1, num?2); }

Ex. functions

#include <iostream> int main()
using namespace std; {
// Defining function that prints given int num1 = 10;
number int num2 = 99;
void print(int n) // Calling print and passing both
{ // num1 and num?2 to it one by
cout << n << end|; one
} print(num1);
print(hum?2);
return O;

}

Function Overloading

Example: Function Overloading
#include <iostream>

using namespace std;

// Overloaded functions

int add(int a, int b)

{

return a + b;

}
double add(double a, double b)

{

return a + b;

}

int main()

{

cout << "Integer addition: " ;
cout<< add(3, 4) << end|;
cout << "Double addition: “;
cout<< add(3.5, 4.5) << end|I;
return O;

)

Allows two add functions with the
same name but different parameter
lists integer & double.

	Slide 1
	Slide 2: Algorithm
	Slide 3: Properties of algorithm
	Slide 4: Check if a given number is even or odd.
	Slide 5: FLOWCHART
	Slide 6: FLOWCHART
	Slide 7: Example of Flowchart
	Slide 8: General Rules for flowcharting
	Slide 9: General Rules for flowcharting
	Slide 10: Complexity
	Slide 11: Complexity
	Slide 12: Complexity
	Slide 13: Time Complexity
	Slide 14: Time Complexity
	Slide 15: Program
	Slide 16: Programing Languages
	Slide 17: Programing Languages
	Slide 18: Programing Languages
	Slide 19: Programing Languages
	Slide 20: High level language
	Slide 21: High level language
	Slide 22: High level language Types
	Slide 23: High level language Types
	Slide 24: High level language Types
	Slide 25: High level language Types
	Slide 26: OOP Vs POP
	Slide 27: OOP Vs POP
	Slide 28: Introduction to C++
	Slide 29: Introduction to C++
	Slide 30: Introduction to C++
	Slide 31: Introduction to C++
	Slide 32: Introduction to C++
	Slide 33: C++ Character Set
	Slide 34: C++ Character Set
	Slide 35: C++ Character Set
	Slide 36: Tokens
	Slide 37: Tokens
	Slide 38: Tokens
	Slide 39: Tokens
	Slide 40: Tokens
	Slide 41: Comment
	Slide 42: Precedence and Associativity
	Slide 43: Precedence and Associativity
	Slide 44: Data Types
	Slide 45: Data Types
	Slide 46: Data Types
	Slide 47: Variables
	Slide 48: Program Structure
	Slide 49: Program Structure
	Slide 50: Program Structure
	Slide 51: Program Structure
	Slide 52: Operators
	Slide 53: Operators
	Slide 54: Operators
	Slide 55: Operators
	Slide 56: Operators
	Slide 57: Operators
	Slide 58: Operators
	Slide 59: Ternary /Conditional Operator
	Slide 60: Expression
	Slide 61: Expression
	Slide 62: Expression
	Slide 63: Expression
	Slide 64: Expression
	Slide 65: Characteristics of Expression
	Slide 66: Statements
	Slide 67: Control Structure
	Slide 68: Selection (Decision-Making) Statements
	Slide 69: Selection (Decision-Making) Statements
	Slide 70: Selection (Decision-Making) Statements
	Slide 71: Selection (Decision-Making) Statements
	Slide 72: Iteration (Looping) Statements
	Slide 73: Iteration (Looping) Statements
	Slide 74: Iteration (Looping) Statements
	Slide 75: Jump Statements
	Slide 76: I/O Operations
	Slide 77: Standard I/O Streams
	Slide 78: Standard I Stream- cin
	Slide 79: Standard O Streams- cout
	Slide 80: cerr
	Slide 81: clog (Standard Log Stream)
	Slide 82: Array
	Slide 83: Array Declaration and Initialization
	Slide 84: Array Accessing Elements
	Slide 85: Types of Arrays
	Slide 86: Types of Arrays
	Slide 87: One-Dimensional Arrays (1D Arrays)
	Slide 88: Two-Dimensional Arrays (2D Arrays)
	Slide 89: Multi-Dimensional Arrays (2D Arrays)
	Slide 90: Fixed Size Array
	Slide 91: Dynamic Size Array
	Slide 92: Dynamic Size Array
	Slide 93: Function
	Slide 94: Function Syntax
	Slide 95: Function
	Slide 96: Types of Functions
	Slide 97: Library Functions-Ex-2
	Slide 98: Library Functions-Ex-3
	Slide 99: Library Functions-Ex-4
	Slide 100: User Defined Functions
	Slide 101: Function-1. No parameters, no return value
	Slide 102: Function-1. No parameters, no return value
	Slide 103: Function-2. parameters, no return value
	Slide 104: Function-3. no parameters, return value
	Slide 105: Function-4. parameters, return value
	Slide 106: More than one Function
	Slide 107: Function Syntax
	Slide 108: Ex. functions
	Slide 109: Function Overloading

