ALNCTT

4
AM GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

UNIT 3

Basic Computer Engineering (BT-205)

Dept. of CSE Prepared by Chetna Singh

ALNCTF

A ANGROUP OF COLLEGES

“WORKING TOWARDS |

Dept. of CSE

SCHEME

Rajiv Gandhi Proudy

iki Vishwavidvalava. Bhopal

New Scheme of Examination as per AICTE Flexible Curricula

II Semester (Group A)

Bachelor of Technology (B.Tech.)

GROUP A: (CS,IT, EE, EX, ELL FT, AT, ML, BT, & BM)

= .\lfumnm Marks Allotted , Contact Hours per week
S.No | Subject | & T Theory Slot Practical Siet Total Total
Code z Subject Name End Mid Quiz/ End Lab work Marks Credits
K Sem. Sem Assignme Sem. & L T P
- Exam. nt Sessional
1.| BT201 BSC-3 | Engineering Physics 70 20 10 30 20 150 2 1 2 “
2.| BT202 BSC4 | Mathematics-11 70 20 10 - - 100 3 i - 4
3| BT203 ESC4 | Basic Mechanical 70 20 10 30 20 150 3 - 2 “
Engineering
4. | BT204 ESC.S Basic Civil Engineering 70 20 10 30 20 150 3 - 2 +
& Mechanics
5.| BT205 ESC-6 | Basic Computer 70 20 10 30 20 150 3 - 2 +
Engineering
6.| BT206 FEMC2 | Language Lab & - - - 30 20 30 - - 2 i
Seminars
7.| BT107 DLC-1 | Internship-1
(60 Hrs Duration) To be completed during first/second semester. Its evaluation/credit to be added in third semester.
at the Institute level
Total 350 100 50 150 100 750 | 14 | 2 | 10 | 21
| Hr Lecture | Hr Tworial 2 Hr Pmctuical
I Credit 1 Credit 1 Credit

Prepared by Chetna Singh

ANCT SYLLABUS

4
A}A GROUP OF COLLEGES RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA,. BHOPAL
“WORKING TOWARDS BEING THE BEST” New Scheme Based On AICTE Flexible Cuarricula

B. Tech. First Year
Branch- Common to All Disciplines

BT205 Basic Computer 3L-0T-2P 4 Credits
Engineering

Course Contents:

UNIT I

Computer: Decfinitrton, Classification, Orgamization 1.c. CPU, register, Bus architecture, Instruction sect,
Memory & Storage Systems, O Devices, and System & Applicanon Software. Computer Application m -
Business, Bio-Informatics, health Care, Remote Sensing & GIS, Mcteorology and Climatology, Computer
Gaming, Multimedia and Animation ctc

Operating System: Definmion, Function, Types, Management of File, Process & Memory. Imtrodcution to
MS word, MS powecrpoint, MS Excel

UNIT I

Introduction to Algonthms, Complexitics and Flowchart, Introduction to Programming, Categornics of
Programming Languages, Program Design, Programming Paradigms, Characteristics or Concepts of OOP,
Procedure Oniented Programming VS object onented Programming. Imtroduction to C++: Character Set,
Tokens, Precedence and Assocmativity, Program Structure, Data Types, Vanables, Operators, Expressions,
Statements and control structures, V'O operations, Array, Functions,

UNIT I

Object & Classes, Scope Resoluton Operator, Constructors & Destructors, Friend Functrons, Inheritance,
Polymorphism, Overloading Functions & Opcrators, Types of Inherntance, Virtual functions. Introduction to
Data Structures.

UNIT IV

Computer Networking: Introduction, Goals, ISO-OSI Model, Functions of Differemt Layers

Intermnetworking Concepts, Devices, TCP/IP Modd. Introduction to Internet, World Wide Web, E-commerce

Computer Security Basics: Introduction to viruses, worms, malware, Trojans, Spyware and Anti-Spyware
Software, Different types of attacks like Money Laundenng, Information Theft, Cyvber Pormography, Emainl
spoofing, Demal of Service (DoS), Cyber Stalking, \Logmc bombs, Hacking Spamming, Cyber Defamation |
pharmang Security measures Firewall, Computer Ethics & Good Practices, Introduction of Cyber Laws about
Internet Fraud, Good Computer Sccurnity Habits,

UNIT V

Data base Management System: Introduction, File oncented approach and Database approach, Data
Modecls, Architecture of Database System, Data independence, Data dictionary, DBA, Primary Key, Data
defintion language and Manpulation Languages.

Cloud computing: definition, cloud infrastrocture, cloud segmemts or service delivery modcels (IaaS, PaaS
and SaaS), cloud deployment modcels’ types of cloud (public, pnivate, community and hybnd clowds), Pros
and Cons of cloud computing

List of Experiment

01. Study and practice of Internal & External DOS commands

02. Study and practice of Basic linux Commands — Is, cp, mv, rm, chmod, kill, ps ctc

03. Study and Practice of MS windows — Folder related operations, My-Computer, window

explorer, Control Pancl,

04. Creatwon and editing of Text files using MS- word.

05. Creatron and opecrating of spreadsheet using MS-Excel.

06. Creatwon and editing power-point shides using MS- power pomnt

07. Creatron and mampulation of database table using SQL 1in MS-Access.

OS. WAP 1o illustrate Arithmetic expressions

09. WAP to illustratc Armays

10. WAP to illustrate functions.

Dept. of CSE 11. WAP to illustrate constructor & Destructor l by Chetna Singh

12. WAP to illustrate Object and classes.

ALNCTT
A}X‘ GROUP OF COLLEGES
“WORK RDS BEING THE BES

N Classes

> A class is a user-defined data type.

> class holds data members and member functions.

>t is a blueprint for objects in Object-Oriented Programming (OOP).

» Example: Class of birds — all birds can fly, have wings and beaks.

> A class works as “template" for creating objects.

> Central idea in oops is Placing data & functions in a single entity.

> Each class is collection of data & functions that manipulate the data.

»When we define a class, we only define specifications for the object.

> No storage or memory is allocated while defining a class.

> To use the data and access functions defined in a class, we must
create objects.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

a{a4Group oF coLLEGES
G THE BEST”

Properties of a Classes

> Class name should start with an uppercase letter (convention).
» Contains data members and member functions.

> Access to members is controlled by access specifiers.

» Member functions can be defined inside or outside the class.

> Similar to C structures, but defaults to private access.

> Supports OOP features: Inheritance, Encapsulation, Abstraction.
> Objects hold separate copies of data members.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

Al crour or couees Classes

#include <iostream> Syntax:

using namespace std;

class rectangle class Class_Name

{ // Class definition { // Class definition
public: private:
int len,br; // Data member // Data member
void get_data(); public:
void area(); // Methods
void print_data(); 4

b

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

“WORKING TOWARDS BEING THE BEST” ‘ I a S S e S

#include <iostream>
using namespace std;

class Fruit { // Class definition
public:
string color =“red”; // Data member
void show()
{ // Member function
cout << "Fruit coloris : " << color << end|;
}
5
int main() {
Fruit apple; // Object declared
apple.show();
return O;
}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

Inside Class Definition

#include <iostream>
using namespace std;
class Car {
public:

void Brand() {

// class Function definition
cout << "Car Brand: Tesla" << endl;

}
)
int main() {
Car cl;
cl.Brand(); // Calling member function
return O;
}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X{ GROUP OF COLLEGES
‘ G THE BEST”

Outside Class Definition

#include <iostream>
using namespace std;
class Car {

public:

void Brand(); // Function declaration(prototype) inside class

5

int main() {
Car c2;

c2.Brand(); // Calling member function
return O;

}

// Function definition outside class
void Car::Brand() {

cout << "Car Brand: BMW" << endl;

}

Dept. of CSE Prepared by Chetna Singh

MG Object

> An object used to represent real-world concepts and entities.

> Objects are instances of a class.

> Memory is allocated when an object is created.

> Object can be created using the class name.

> Object interacts with the help of methods defined within class.

> For example, the human type student is a class, while a particular student
named Ram is an object of the student class.

> an object is a fundamental concept in Object-Oriented Programming.

> |t represents a concrete instance of a class.

> Objects are the actual entities that are created as an instance of a class.
There can be as many objects of a class as desired.

> Ex. int a; //an instance of type integer

» student ram; //an instance of type student

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGE

smznss - Characteristics of an Object

1. Instance of a Class:

> A class acts as a blueprint or a template.

> It defines the structure and behavior (data members and member
functions) for a specific type of entity.

> An object is a tangible realization of that blueprint.

> it's a specific entity created based on the class definition.

2. Encapsulation of Data and Behavior:

> An object bundles together data (attributes or member variables) and
the functions (methods or member functions).

> |t operate on that data into a single unit. This principle is known as
encapsulation.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
‘ G THE BEST”

Characteristics of an Object

3. State and Behavior:

> State: The state of an object is defined by the values of its data
members at a particular point in time.

> Behavior: The behavior of an object is determined by the actions it
can perform through its member functions.

4. Memory Allocation:

»When a class is defined, no memory is allocated.

»Memory is only allocated when an object of that class is created.

> Each object of a class will have its own separate memory space for its
data members.

Dept. of CSE Prepared by Chetna Singh

ALNC . .
ARG TOWARDS BENG THE 22+ C rea tl N g an O b J ec t

»0Once the class is defined, we can create its object in the same way
we declare the variables of any other inbuilt data type.
ClassName objectName;

»Member Access : Members of the class can be accessed inside the
class itself simply by using their assigned name.

»To access them outside, the (.) dot operator is used with the object
of the class.

»obj.memberl // For data members

»obj.member2(..) // For functions

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

Ao orsouzoss Creating an Object

#include <iostream>
using namespace std;
class Box {
public:
double length, height;
)
int main() {
Box Box1, Box2;
// Assign values and
compute volume

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES e o
ANORKING TOWARDS BEING THE 5251 C re a tl n g a n O b J e Ct
ttinclude <iostream> void print()
using namespace std; cout<<“sum is : “<<c<<“\n":
class Example }
{ Hoo
private: Int main()
inta,b,c; //data member Example obj;
public: /I object created

Obj.add(10,20);

intadd(inta, intb) //function call
{ Obij.print();

c=a+b;
\ geturn 0;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

Creating an Object

#include <iostream> Car myCar2;
using namespace std; // Object create
?355 Car myCar.brand = "Toyota";
o // Assign value
{)/UEII?CS_S definition cout << "Car Brand: " <<myCar.brand;
string 'brand; // Access object data
) return O;
int main() }
{
Car myCar;

// Object create
myCar.brand = “BMW",;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

Ao o couteoes O bj ect Vs Classes

For a single class there can be any number of There are many objects that can be created from
objects. Ex. For River class , ganga Yamuna, one class. These objects make use of method and
Narmada can be objects. attributes defined by belonging class.

Scope of class is persistent throughout the Objects can be created & destroyed as per the
program. requirements.

Class can not be initialized with some property We can assign some property values to the
value. objects.

A class has unique name Various objects having different names can be

created for the same class.

Dept. of CSE Prepared by Chetna Singh

JLNCTT :
Al roueor coueces Ob je ct Vs Classes

A blueprint or template for creating objects. An instance of a class with actual values.

No memory is allocated for a class until an object Memory is allocated when an object is created.
1s created.

Conceptual entity describing structure and A real-world entity created from the class.
behaviour.

Defines properties and functions common to all ~ Stores specific data and manipulates it using class
objects of that type. functions.

Represents a general concept or type. Represents a specific instance of the class.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

Structure Vs Classes

Structure Class
By default members of structure are public. By default members of class are private.
Structure can not be inherited. Class can be inherited.
Structure do not require constructors. Classes require constructors for initializing the
objects.
Structure contains only data members. Class contains the data as well as the function
members.

Dept. of CSE Prepared by Chetna Singh

JAUNCT
A}X‘ GROUP OF COLLEGES ° °
“WORKING TOWARDS BEING THE BEST” A C C e S S S p e C I fl e rS

> Public: Accessible from anywhere.

> Private: Accessible only within the class (default).

> Protected: Accessible within the class and derived classes.
>Example:

> class PublicAccess { public: int x; void display(); };

> class PrivateAccess { private: int x; void display(); };

> class ProtectedAccess { protected: int x; void display(); };

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A’X‘ GROUP OF COLLEGES

semzes Scope Resolution Operator

> The scope resolution operator in C++ is denoted by two colon symbols (::).

> It is a powerful operator used to specify the scope to which an identifier
(variable, function, class, or namespace) belongs.

> This is particularly useful in situations where there might be name
conflicts or when you need to explicitly refer to an entity within a specific
scope.

> Scope resolution operator (::) is used to access the identifiers such as
variable names and function names defined inside some other scope in the
current scope.

> Uses:

> Access global variables when local variables have the same name.

> Define functions outside a class.

> Access static members of a class.

> Resolve ambiguity in multiple inheritance.

Dept. of CSE Prepared by Chetna Singh

ALNCTF :
Ao conests Scope Resolution Operator

> Accessing Global Variables: When a local variable has the same
name as a global variable, the local variable takes precedence within

Its scope.
> To access the global variable explicitly, the scope resolution operator

can be used.
int x = 10; // Global variable

int main() {
int x = 20; // Local variable

cout << "Local x: " << x ;
cout << "Global x: " << :x;
return 0; }

Dept. of CSE Prepared by Chetna Singh

ALNCTF .
disernes GeQ pe Resolution Operator

> Defining Member Functions Outside a Class: Member functions of a
class can be defined outside the class definition using the scope
resolution operator to associate the function with its respective class.

class Fruit {
public:
void Print_Color();

5

void Fruit::Print_Color() {
// Function definition

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

=z Scope Resolution Operator

> Accessing Static Members of a Class: Static members (variables or
functions) belong to the class. They are accessed using the class name
followed by the scope resolution operator and the member name.

class MyClass {
public:

static int count;
5

int MyClass::count = 0; // Definition of static member

int main() {
cout << MyClass::count;
return O;

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

=z Scope Resolution Operator

> Referring to Members of a Namespace: To access members (variables,
functions, classes, etc.) declared within a namespace, the namespace
name is used, followed by the scope resolution operator and the member
name.

namespace MyNamespace

{
J

int main() {
cout << MyNamespace::a;
return O;

}

Dept. of CSE Prepared by Chetna Singh

int a =5;

<>‘1‘-NC""
o e Constructors

> A constructor is a special method(special class members).

> |t is automatically called when an object of a class is created.

> Constructors are called by the compiler every time an object of that
class is instantiated.

» Constructors share the same name as the class.

> |t can be defined inside or outside the class definition.

> Special member function with the same name as the class.

> No return type, not even void.

> Automatically invoked when an object is created.

> Types of constructors :

1. Default Constructor: No parameters.

2. Parameterized Constructor: Takes parameters.

3. Copy Constructor: Copies one object to another.

Dept. of CSE Prepared by Chetna Singh

JLNCTT

A}A GROUP OF COLLEGES

sz Characteristics of a Constructor

> Declared in public section.

> No return type because Constructors do not return values.

» Cannot be inherited or virtual.

» Cannot have their address taken.

> If we do not specify a constructor, Compiler generates a default
constructor for us (expects no parameters and has an empty body).

> The name of the constructor is the same as its class name.

> A constructor gets called automatically when we create the object of
the class.

> Multiple constructors can be declared in a single class.

> In case of multiple constructors, the one with matching function
signature will be called.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

‘N GROUP OF COLLEGES
“ﬁORﬁGTOWARDSBEINGTHEN CO n St r u CtO rS
class Fruit Output:
{ public: Constructor called
FEuit() Ex 2
}cout << “Constructor called"; C|a|§1|ﬁ Line {
public:
5 Line(); // constructor
int main 5
Fruit Or(z):\r{1ge; Line::Line() {
// Create an object of fruit Class cout << "Object created”;
//(this will call the constructor))
}return 0;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

{)a4Group OF coLLEGE
Lo Default Constructors
#include <iostream> No constructor defined in class

using namespace std;
// Class with no explicity defined means default constructor
constructors called.
class Fruit
{
public:
Ji
int main() {
// Creating object
Fruit apple;
return O;

}

Dept. of CSE Prepared by Chetna Singh

LALNCTF

‘N GROUP OF COLLEGES
ERLAS Default Constructors
#include <iostream> .
using namespace std; Output: _ _
class Fruit{ Default Constructor called: Fruit Color is Red
public: |
string color; : :
/] Detault Constructor 1. A default constructgr s automatically
Fruit() { generated by the compiler if the programmer
color = ”'Bed"; does not define one.
cout << "Default Constructor 2. This constructor doesn't take any argument as

called:"<<" Fruit Coloris " << color; o o)
l ’ it is parameter less and initializes object

members using default values.

int main() { 3. lItis also called a zero-argument constructor.

Fruit apple; // Default Constructor
return O;

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES

smmmzmi - Parameterized Constructors

#include <iostream> Output:
using namespace std; 10
class ABC {

public:
int val;

// Parameterized Constructor
ABC(int x) {

\ val = x;
I

int main() {

// Creating object with a parameter
ABC a(10);

cout << a.val;
return O;

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES

semezes= Parameterized Constructors

#include <iostream> Output:

using namespace std; Parameterized Constructor: fruit color is Green

class Fruit {

p“st{'r'ﬁ;g color: 1. Parameterized constructor allow us to pass
// Parameterized Constructor arguments to constructors.
F”égfgf,”:ng.b) { 2. these arguments help initialize an object's

cout << "Parameterized members.

Sgnesr;[(gllj'dor: fruit coloris " <<color 3 Tg create a parameterized constructor, simply
} ’ add parameters to it the way you would to any

5 , other function.

IntFrrTJ?tlg(g)éle(”Green")- 4. When you define the constructor’s body, use
// Parameterized Constructor the parameters to 1nitialize the object's

\ return O; members.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK GROUP OF COLLEGES
A SOLLEGE CO py CO nstructors
#include <iostream> Output:
using namespace std;
class Fruit{ _ _
public: Parameterized Constructor: color is Yellow
string color;
Fruit(string b) { // Parameterized Constructor ,
color = b: Copy Constructor data for new fruit now new
cout << "Parameterized Constructor: color is " << fruit color is Yellow

color<< endl;

}
Fruit(Fruit &f) { // Copy Constructor
color =f.color;
cout << "Copy Constructor data for new fruit now new
fruit color is " << color << endl;

}
oo
int main() {
Fruit apple("Yellow"); // Parameterized Constructor
Fruit maggo = apple; // Copy Constructor
return O;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES

Co o), Constructors

#include <iostream> Output:
using namespace std; 20
class A {
public:

int val;

// Parameterized constructor
A(int x) {
val = x;

}
// Copy constructor
A(A &a) {

int mainS) {
A a(20);
// Creating another object from a
A newobj(a);
cout << newobj.val;
return O;

}

Dept. of CSE Prepared by Chetna Singh

val=awval; } }

ALNCTT
A}X‘ GROUP OF COLLEGES
“WORK RDS BEING THE BES

oo Destructors

> Destructors are called by the compiler when the scope of an object
ends.

> They deallocate memory earlier used by the object of the class to avoid
any memory leaks.

> Destructors have the same name as the class but Prefixed with ~.

> Destructor is an instance member function that is invoked automatically
whenever an object is going to be destroyed.

> destructor is the last function that is going to be called before an object
is destroyed.

> Special function called when an object goes out of scope.

> No arguments.

> Syntax:

~className(){ // Body of destructor }

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK GROUP OF COLLEGES

Al srouror o Destructors

class A {
public:
~A(); // destructor

5

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

AV rove oF coLiEes Destructors

#include <iostream>
using namespace std;
class File {
public:
File() {
cout << "File Opened!" << endl;

}

~File() {
cout << "File Closed!" << end|;

g }
int main()

File f1; }/ Constructor
return 0; // Destructor

Dept. of CSE Prepared by Chetna Singh

ARG TOWARDS BENG THE 22+ D e S t r u Ct O r S

class A {
public:
A()

{
cout << "Constructor Called “; }

~A() 1

cout << "Destructor Called”;

' b

int main() {
A obj;
return O;

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
G THE BEST”

Characteristics of a Destructor

> Destructor has the same name as their class name

> preceded by a tilde (~) symbol.

> Only one destructor is defined in a class.

> destructor cannot be overloaded.

> Destructor neither requires any argument nor returns any value.

> It is automatically called when an object goes out of scope.

> Destructor release memory space occupied by the objects created by
the constructor.

> In destructor, objects are destroyed in the reverse of an object
creation.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
G THE BEST”

Friend Functions

> Friend function is a non-member function.
>t is Defined outside the class.
>t is Used to access private and protected members.
>t is Declared with the friend keyword.
> it is declared within the class definition using the friend keyword.
> it is not considered a member of that class.
> it is not invoked using the member-selection operators (. or ->).
> Friend function allow to access the private and protected members of

another class.
> Syntax:

class A {
friend void fun();

5

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES b °
AORIING TOWARDS BEING THE BEST" F rl e n d F u n Ct I O n S
> Example:
class class_name {
private:
//data
\ friend return_type friend_fun_name(); //declare
return_type friend_fun_name(){
//Object create
//private data access here
int main() {
friend_fun_name(); //call
\ return O;

Dept. of CSE Prepared by Chetna Singh

ALNCTF : :
Aladcrovpor coLiges Why we use Friend Function?

class ABC {
private:
Int a;
}

int main() {
ABC obj;
// Error! Cannot access private members from here.
obj.a =5;
}
> friend functions that break this rule and allow us to access private
member functions from outside the class.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X{ GROUP OF COLLEGES ° °
#include <iostream> using namespace std;
class A {

private:
Int a;
\ friend void fun();
void fun'(){
A obj;
obj.a=10;
\ cout<<"friend function update private data:"<< obj.a;
int main() {
fun();
\ return O;

Dept. of CSE Prepared by Chetna Singh

JLNCTT

AM GROUP OF COLLEGES

* Characteristics Friend Functions

Access to private and protected members

Declared inside the class

Defined outside the class

Not a member function

Can be member function of another class.

>Fr|end Functions Use

> Operator overloading: For overloading binary operators.

> Utility functions: For implement global utility functions.

> Testing: friend functions used to test private state of a class.

Lnhwbhe

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
! G THE BEST”

Advantage Friend Functions

No Inheritance :- A friend function used to access members without
the need of inheriting the class.

Bridge b/w classes:- The friend function acts as a bridge between two
classes by accessing their private data.

Versatile:- It can be used to increase the versatility of overloaded
operators.

Declaration:- It can be declared either in the public or private or
protected part of the class.

vV WV V V¥V

Dept. of CSE Prepared by Chetna Singh

ALNCTT
Am GROUP OF COLLEGES
DS BEING THE BEST”

Demerits of Friend Functions

» Violate data hiding:- Friend functions have access to private members
of a class from outside the class which violates the law of data hiding.

» No Runtime Polymorphism:- Friend functions cannot do any run-time
polymorphism in their members.

» Less Effective Encapsulation:-Declaring too many functions or external
classes as friends with access to a class’s private or protected data
reduces the effectiveness of encapsulation. This compromises one or
more of the core principles of object-oriented programming.

» Non-inheritable:- Friendship is not inherited. In layman's terms, if a
base class has a friend function, then the function doesn’t become a
friend of the derived class(es).

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

Friend Functions

class A {

private:

Int a=10;
friend int fun();

b

int fun(){
A obj;
return obj.a ;
. J
int main() {
cout<<“friend function access private variable a:”;
cout<<fun();
return O;

» friend functions that break this rule and allow us to access private member
functions from outside the class.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

Ailoora ouzos Friend Functions

#include <iostream>
using namespace std;
class A {

private:

int a=10;
friend int fun(int x);
};

int fun(int x){

A obj;

return obj.a + x;

}

int main() {

cout<<“friend function access private value of a:"<<fun(44)<<endl;
return O;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES

Inheritance

> Inheritance is a core concept of Object-Oriented Programming
> It allows a new (derived) class to inherit properties and behaviours from
an existing class.
> |t is capability of a class to derive property of another class.
> It provide code reusability, extensibility and hierarchical relationships
among classes.
> |t establishes an "is-a" relationship between classes.
> It allow us to defined a class in terms of another class.
> Existing class is called base class.
> New class is called derived class.
class Base
{ //Base class members};
class Derived : public Base
{ // Derived class members};

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
‘ S

Al rouror coeses Inheritance

Without Inheritance Wit"eritnce

B

attendance()
newspaper()

grade()

attendance()

attendance() attendance()

newspaper()

newspaper() newspaper() grade()

grade() grade()

Dept. of CSE Prepared by Chetna Singh

JUNCTT

AM GROUP OF COLLEGES

i sroup oF coreces Inheritance

> Base Class (Parent Class):The class from which properties and
methods are inherited.

> Derived Class (Child Class): The class that inherits the properties and
methods from the base class.

> Access Specifiers: public, protected, and private. It used to control
the visibility and accessibility of base class members within the
derived class. We generally used public inheritance.

Derived Class Derived Class Derived Class
Base Class Private Mode Protected Mode Public Mode
Private Not Inherited Not Inherited Not Inherited
Protected Private Protected Protected
Public Private Protected Public

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
G THE BEST”

Modes of Inheritance

1. Public inheritance

> The base class’s public members become = public and

> protected members become > protected in the derived class.

> Private members are inaccessible.

2. Protected Inheritance

> base class’s public & protected members become =2 protected in derived.
» Private members are inaccessible.

3. Private Inheritance

> Both public & protected members of base class become > private in derived.
> Private members are inaccessible.

Dept. of CSE Prepared by Chetna Singh

ALNCT . :
e Benefits of Inheritance

> Code Reusability: Reduces redundant code by allowing derived
classes to reuse code from base classes.

> Extensibility: Allows for the creation of new classes that build upon
existing functionality without modifying the original code.

> Polymorphism: Enables the use of base class pointers to refer to
derived class objects, facilitating dynamic method dispatch.

» Modularity: Promotes a more organized and structured codebase.

> Reliability: By reusing a base class that has already been tested, the
reliability of the new code is enhanced.

> Easy to understand.

> Save time & effort.

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGE

Ty p es Qf | N h er | tance

> There are 5 types of Inheritance:

1. Single Inheritance: A derived class inherits from only one base class.

2. Multiple Inheritance: A derived class inherits from multiple base
classes.

3. Multilevel Inheritance: A derived class inherits from a base class,
which itself is derived from another base class.

4. Hierarchical Inheritance: Multiple derived classes inherit from a
single base class.

5. Hybrid Inheritance: A combination of two or more types of
inheritance.

Dept. of CSE Prepared by Chetna Singh

SLNCTF : -
AlaScrour oF coLreces Sin g le Inheritance

> In this type of inheritance, there is only one derived class inherited
from one base class.

class base { Single Inheritance

//Body
y CassA Base class
class derived : access_specifier base -
{ i
}. f/Body Oesse Derived class

Dept. of CSE Prepared by Chetna Singh

ALN C'II'

ddmrznes Single Inheritance
#include <iostream> class B : public A
using namespace std; { ol
public:
glass A void fun2() {
_ cout<<“child class"<<end];
public: b
void funi() int main() {
{ B obj;
cout<<“Base Class"<<endl; obj.funi();
} obj.fun2();
1 return0; }

Dept. of CSE Prepared by Chetna Singh

JLNCTT

AM GROUP OF COLLEGES

Multiple Inherltancl\fultl

ple Inheritance

> one derived class inherits from two or more base class.
class basel

{ (Base class1) (Base class?)

//body S T
class base2 { N /

//body
b

class derived : public basel, public base2

{ ClassA

//body of derived class
¥ (Derlved cIass)

Dept. of CSE Prepared by Chetna Singh

ALN C'II'

AR Multiple Inheritance
class A { class C : public A, public B
. {
public: public:
void funl() void fun3() {
" ", funl(),
{ cout<<“class A”; } an2() 1)
}; int main() {
class B { C obj;
. obj.funi();
p”_bl'c' Sl T 1)
void fUﬂZ() obj.fun3();
{ cout<<“classB”; } }; return O0; }

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}x GROUP OF COLLEGES ° .
Al Mu |ti |€V€| Inh eritance
> A derived class inherits from another derived class in this type of
inheritance.
class C Multilevel Inheritance
{ //body };
class B : public C - ClassC | (Base class2)
{ //body }; I
class A : public B (Base class1) | assB""
{ //Derived body }; — ‘ -

* ClassA (Derived class)

Dept. of CSE Prepared by Chetna Singh

ALNCTT

Ao Multilevel Inheritance
class A { cIa;iC : public B {
. public:
pu.bllc. void fun3() {
void funi() { funi();
cout<<“class A"<<endl; } } fun2();
class B: public A { ;ou}t<<”c|ass C"<<endl;
public: int main() {
void fun2() { C obj;
cout<<“class B"<<endl; } }; obj.fun3();
return O; }

Dept. of CSE Prepared by Chetna Singh

SLNCTF , . :
Al Hierarchical Inheritance

> Multiple derived classes are inherited from a single base class in this
type of inheritance.

class base { //body }; Hierarchical Inheritance

class derivedl : public base

{ //body };
class derived?2 : public base

{ //body };

— —
A v
D %‘ @AM
M At e L AN

, . SR

—

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
G THE BEST”

Hybrid Inheritance

Hybrid inheritance is the combination of two or more types of
inheritance. We can make various combinations in hybrid
inheritance. —

D

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES

» Polymorphism means same function possesses different behaviour in
different situations.it is Important feature in oops

» Polymorphism, meaning having “many forms," .

> It enables code to be more flexible, reusable, and maintainable.

>t is ability of a message to be displayed in more than one form.

» Example boy at the same time son, sibling, friend, student.

[F‘Dlymorphism]

l
L +

[Compile Time] [Run Time

l |
L ¥ L

Function O perator Function
Owverloading Overloading Owerridinmg

Dept. of CSE Prepared by Chetna Singh

JLNCTT

AM GROUP OF COLLEGES

Aslars Function Overloading

> Compile-time Polymorphism/ Static Polymorphism / Early binding.

> This type of polymorphism is resolved during the compilation phase.

> The compiler determines which function or operator to call based on the
arguments' types and number.

> Allows multiple functions with the same name but different parameters.

> Function overloading is a feature of object-oriented programming

> where two or more functions can have the same name but behave
differently for different parameters. Functions can be overloaded either
by changing the number of arguments or changing the type of arguments.

> Types of Compile-Time Polymorphism

1. function overloading

2. operator overloading.

Dept. of CSE Prepared by Chetna Singh

JLNCTT

A}A GROUP OF COLLEGES

sz Rules for Function Overloading

1. The overloaded functions may differ by number of parameters.
2. The overloaded functions may differ by data types.
3. The same function name is used for various instances of function call.
> For example, if there is a function sum which performs addition operation
then can use overloading functions like this —
int sum(int a,int b);
int sum(int a, int b,int c);
int sum(int a, int b,int ¢,int d);
> Similarly , the function overloading can be achieved like this —
int sum(int a, int b);
float sum(float a,float b);
double sum(double a, double b);
char sum(char a,char b);
> That means we can handle dlfferent number of parameters or different typ

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}x GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

Function Overloading

class Addition {
public:
void add(int a, int b) {
cout << "Integer Sum ="<<a+ b << endl; }
void add() {
cout << “Addition function"; } };
int main() {

Addition A1l;

Al.add(10, 2);
Al.add();
return 0; }

Dept. of CSE Prepared by Chetna Singh

SLNCTF : :
Al Function Overloading

class A {
public:
int add(int a, int b) {
return a + b; }
string add(string a, string b) {
returna+b; } }
int main() {
A obj;
cout << obj.add(5, 10);
cout << endl;
cout << obj.add("hello, ", "Chetna .!");
return 0; }

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGE

O pera tor Ove r| Od d N g

> Operator Overloading Allows operators (like +, -, *, /) to be redefined
in class.

> This provides a more intuitive way to perform operations on user-
defined types.

> ability to provide the operators with a special meaning for particular
data type, this ability is known as operator overloading.

> For example, we can make use of the addition operator (+) for string
to concatenate two strings and for integer to add two integers.

> The << and >> operator are binary shift operators but are also used
with input and output streams. This is possible due to operator
overloading.

Dept. of CSE Prepared by Chetna Singh

LN CT
Al Operator Overloading

» Operator overloading can be defined as an ability to define a new meaning
for an existing (built-in) "operator".

> Various types of operators are overloaded:

Mathematical operators such as + ++

Relational operators such as < > ==

Logical operators such as && | |

Access operators [] ->

Assignment operator =

Stream |/O operators < <> >

> All of these operators have a predefined and unchangeable meaning for
the built-in types.

> All of these operators can be given a specific interpretation for different
classes or combination of classes.

> The overloading function can be a member or a non member function.

Dept. of CSE Prepared by Chetna Singh

oUW E

ALNCTT

A}z GROUP OF COLLEGES .
A R O LOLLEGES O p era to r Ove rl 03 d N g
» C++ provides the flexibility to the programmers in extending these built-in
operators.

> Define a function with keyword operator.

> Then write the operator as a function name. That means we can program
that specified operator.

> Overloaded operator must be either Non static member function of class
or At least one parameter should be class.

> Makes no assumptions about similar operators. For example, the fact that
you overloaded + does not mean that you have also defined += for your
class type.

> Restrictions on use of operators.

> It's not possible to change an operator's precedence.

> |t's not possible to create new operators,

> For example: You can not redefine :: sizeof. ?, or. (dot).

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘GROUP OF COLLEGES °
AV crovp oF coeces O pera tor Overloadin g
class A {
public:
Int X;

A(inta){x=a;}
A operator+(A o)
{return A(x + 0.x); }};
int main() {
A al(5), a2(10);
cout << (al + a2).x;
return O; }
Output:
15

Dept. of CSE Prepared by Chetna Singh

JLNCTT

AM GROUP OF COLLEGES

Adlom Operator Overloading

#include <iostream>
using namespace std;
class A {
public:
int x;
A(int a) { x=a;}
// overload of +
A operator+(A o) {
return A(x + 0.x);
b b
int main() {
A al(5), a2(10);
A sum =al + a2; // overload operator+
cout<<sum.x; // print “15”
return O;

Dept. of CSE Prepared by Chetna Singh

ALNCTF :
Aprns Operator Overloading

class Complex {
public:
int real, imag;
Complex(intr, inti){real=r;imag=i; }

Complex operator + (Complex c) {
return Complex(real + c.real, imag + c.imag);

}
b
int main() {
Complex c1(2, 3), c2(4, 5);
Complex c3 =cl +c2; // calls operator+
cout << c3.real << " + " << c3.imag << "i" << endl;
return O;

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
G THE BEST”

Operator Overloading

class A{

public:

Int a;

A(int x){ a=x;}

void operator !|(){ a=-3;} };

int main(){

A ob(10);

cout<<"given value of ais : " <<0b.3;
lob; //! operator overload
cout<<"\nNew value operator overloading ! is : "<<ob.3a;
return O;}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGE

Run-time Polymorphism

> Also called Dynamic Polymorphism function overriding.

> This type of polymorphism is resolved during program execution.

> |t relies on inheritance and virtual functions.

> Virtual Functions: Declared in a base class using the virtual keyword
and overridden in derived classes. When a base class pointer or
reference points to a derived class object, calling a virtual function
through that pointer/reference will invoke the derived class's version
of the function. This is achieved through a mechanism called the
"virtual table" (vtable).

Dept. of CSE Prepared by Chetna Singh

ALNCTT
AK‘ GROUP OF COLLEGES
DS BEING THE BEST”

Virtual Function

» Virtual function overwrite in derived class.

> It tells compiler to perform late binding on this function.

» Virtual keyword is used to defined virtual function.

» Virtual function ensure that the correct function is called for an object.

» Reference pointer used to call virtual function.

» A virtual function is a member function.

» It is declared within a base class and redefined by a derived class.

» The virtual function within the base class defines the form of the interface
to that function Each redefinition of the virtual function by a derived class
indicate some different task related to derived class.

» When a virtual function is redefined by a derived class, the keyword virtual

is not needed. The virtual function written in base class acts as interface and
the function defined in derived classes act as different forms of the same
function. This property of virtual function brings the runtime polymorphism.

Dept. of CSE Prepared by Chetna Singh

JAUNCT
A}x GROUP OF COLLEGES) .
“WgRKIN‘GTOWARDS BEING THE BEST” R u n _t I m e P O Iy IW - O r p h I S

class Base {
public:
virtual void show() { cout << "Base show\n"; }

class Derived : public Base {
public:
void show() { cout << "Derived show\n"; }

’

int main() {
Base* b = new Derived();
b->show();
delete b;

\ return O;

Output:

Derived show

Dept. of CSE Prepared by Chetna Singh

ALNCTT

4
AM GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

Virtual Function

#include <iostream> class Derived : public Base int main()
using namespace std; { {
public: Base baseObj;

class Base { void show() Derived derivedObj;
public:

virtual void ShOW() cout << "Derived class baSEObj.ShOW(),’
{ method." << end|!:

cout << "Base class } derivedObj.show();

show method." << endl; }:

} return O;
Iy

}

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGES
“WORKING TOWARDS BEING THE BEST”

Virtual Function

class Shape {

public:

virtual void draw() { cout << "Drawing a shape."; } }
class Circle : public Shape {

public:

void draw() { cout << "Drawing acircle."; } }

int main() {

Shape* s1 = new Circle();
s1->draw(); // Calls Circle's draw()
delete s1;

return 0; }

Dept. of CSE Prepared by Chetna Singh

Compile-Time Polymorphism Run-Time Polymorphism

It is also called Static Polymorphism. It is also known as Dynamic Polymorphism.
In compile-time polymorphism, the compiler In run-time polymorphism, the decision of which
determines which function or operation to call function to call is determined at runtime based on
based on the number, types, and order of the actual object type rather than the reference or
arguments. pointer type.
Function calls are statically binded. Function calls are dynamically binded.

Compile-time Polymorphism can be exhibited by:
1. Function Overloading
2. Operator Overloading

Run-time Polymorphism can be exhibited by
Function Overriding.

Faster execution rate. Comparatively slower execution rate.

Inheritance in not involved. Involves inheritance.

Dept. of CSE Prepared by Chetna Singh

w2 Introduction to Data Structures

> A data structure represents the logical relationship that exists between
individual elements of data to carry out certain task.

> A data structure defines a way of organizing all data items that consider
not only the elements stored but also stores the relationship between the
elements.

»Data structure deals with the study of how the data is organised in
memory, how efficiently the data can be retrieved and manipulated and
possible ways in which different data items are logically related.

»Data structure is collection of elements and all the possible operations
which are required for those set of elements.

> A data structure in a set of domains D, a set of functions F and set of
axioms A. This triple (D, F, A) denotes the data structure d.

Dept. of CSE Prepared by Chetna Singh

w2 Introduction to Data Structures

> A data structure is a specific way of organize, store, and manage data in a
computer's memory to facilitate efficient access and modification.

> |t provides a systematic approach to handling data, which is crucial for
developing effective and scalable software.

> Organization: Data structures define how data elements are arranged
relative to each other, establishing relationships and enabling logical access
patterns.

> Storage: They dictate how data is physically stored in memory, influencing
memory usage and retrieval speed.

> Operations: It support various operations, such as insertion, deletion,
searching, and traversal, which are performed on the stored data. The
efficiency of these operations is a primary consideration when choosing a

Dept. of CSE Prepared by Chetna Singh

ANCT
Ailsovorcaes Types of Data Structures

1. primitive data structure

2. Non-Primitive data structure.

> 1. Primitive data structures :- example: int, char, float

> 2. Non primitive data structures

> 2. (i) Linear data structures :- In linear data structures, data elements are
arranged sequentiall¥, one after the other. Each element has a unique
predecessor (except for the first element) and a unique successor (except for
the last element). where each element is attached to its previous and next
adjacent elements.

a) Sequential Organization: Order Preservation

b) Fixed or Dynamic Size

c) Efficient Access

d) example: lists, stacks, queues

> 2. (ii) Non linear data structures :- Data structures where data elements are not
placed sequentially or linearly are called non-linear data structures. Examples
are trees and graphs. example: trees, graphs

Dept. of CSE Prepared by Chetna Singh

ALNCT

A ANGROUP OF COLLEGES

Types of Data Structures

» =
Data Structure
|

+ <

Primitive l Non-Primitive
| |

Int linear Non-linear
I]
Char
Static Dynamic Tree Graph
Bool

Dept. of CSE Prepared by Chetna Singh

ALNCTT

A}X‘ GROUP OF COLLEGE

Linear Data Structures

> Elements are arranged sequentially.

> Elements are arranged in one dimension.

> Example: Array, Linked lists, stack, queue, etc.

1. Arrays: A collection of elements of the same data type stored in
contiguous memory locations.

2. Linked Lists: A sequence of nodes, where each node contains data
and a pointer to the next node.

3. Stacks: A Last-In, First-Out (LIFO) structure where elements are
added and removed from the same end.

4. Queues: A First-In, First-Out (FIFO) structure where elements are
added at one end and removed from the other.

Dept. of CSE Prepared by Chetna Singh

ALNCTF

Aﬁ GROUP OF COLLEGES

~=zess Applications of Data Structures

Databases: Data structures are used to organize and store data in a database,
allowing for efficient retrieval and manipulation.
Operating systems: Data structures are used in the design and implementation
of operating systems to manage system resources, such as memory and files.
Computer graphics: Data structures are used to represent geometric shapes
and other graphical elements in computer graphics applications.
Artificial intelligence: Data structures are used to represent knowledge and
information in artificial intelligence systemes.

Advantages of Data Structures:
Efficiency: Data structures allow for efficient storage and retrieval of data,
which is important in applications where performance is critical.
Flexibility: Data structures provide a flexible way to organize and store data,
allowing for easy modification and manipulation.
Reusability: Data structures can be used in multiple programs and applications,
reducing the need for redundant code.
Maintainability: Well-designed data structures can make programs easier to

understand, modify, and maintain over time.
Dept. of CSE Prepared by Chetna Singh

P W DN Py & WD

ALNCTT

AK‘ GROUP OF COLLEGES

e Operations on Data Structures

1. Traversing: Basically to process a data structure if every element of data
structure is visited once and only once, such type of operation is called as
traversing.

2. Insertion: When an element of the same type is added to an existing data
structure, the operation we are doing is called as Insertion operation. The
element can be added anywhere in the data structure in the data structure.

3. Deletion: When an element is removed from the data structure, the operation
we are doing is called as Deletion operation. We can delete an element from
data structure from any position.

4. Searching: When an element is checked for its presence in a data structure,
that operation we are doing is called as ‘searching’ operation. The element
that is to be searched is called as key element.

5. Sorting: When all the elements of array are arranged in either ascending or
descending order, the operation used to do this process is called as Sorting

6. Merging: When two lists List A and List B of size M and N respectively, of same
type of elements, clubbed or joined to produce the third list, List C of size
(M+N), and the operation done during the process is called as Merging.

Dept. of CSE Prepared by Chetna Singh

VS
B LINKED LAST o

(~1 JH{~-1 J}H{~-1 J}A{-~

r . - - ¥ r -2 ¢
Array LinkedList -
Elements are stored in contiguous Elements are connected using
memory locations pointers
Supports random access to Only supports sequential access
elements to elements
Insertions and deletions are tricky: Insertions and deletions can be
elements need to be shifted done efficiently without shifting
Fixed memory: static memory Dynamic memory allocation at
allocation runtime
Elements are independent of each Each node points to the next node or
other both the next and the previous node

Dept. of CSE Prepared by Chetna Singh

ALNCTT

AK‘ GROUP OF COLLEGES
‘ G THE BEST”

Non-Linear Data Structures

> Elements are not arranged sequentially, allowing for more complex
relationships.

> Elements are arranged in one-many, many-one and many-many
dimensions.

> Example: tree, graph, table, etc.

> Trees: Hierarchical structures where data is organized in a parent-
child relationship.

> Graphs: Collections of nodes (vertices) connected by edges,
representing relationships between entities.

> Hash Tables: Structures that map keys to values for efficient data
retrieval.

Dept. of CSE Prepared by Chetna Singh

	Slide 1:
	Slide 2: SCHEME
	Slide 3: SYLLABUS
	Slide 4: Classes
	Slide 5: Properties of a Classes
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Inside Class Definition
	Slide 9: Outside Class Definition
	Slide 10: Object
	Slide 11: Characteristics of an Object
	Slide 12: Characteristics of an Object
	Slide 13: Creating an Object
	Slide 14: Creating an Object
	Slide 15: Creating an Object
	Slide 16: Creating an Object
	Slide 17: Object Vs Classes
	Slide 18: Object Vs Classes
	Slide 19: Structure Vs Classes
	Slide 20: Access Specifiers
	Slide 21: Scope Resolution Operator
	Slide 22: Scope Resolution Operator
	Slide 23: Scope Resolution Operator
	Slide 24: Scope Resolution Operator
	Slide 25: Scope Resolution Operator
	Slide 26: Constructors
	Slide 27: Characteristics of a Constructor
	Slide 28: Constructors
	Slide 29: Default Constructors
	Slide 30: Default Constructors
	Slide 31: Parameterized Constructors
	Slide 32: Parameterized Constructors
	Slide 33: Copy Constructors
	Slide 34: Copy Constructors
	Slide 35: Destructors
	Slide 36: Destructors
	Slide 37: Destructors
	Slide 38: Destructors
	Slide 39: Characteristics of a Destructor
	Slide 40: Friend Functions
	Slide 41: Friend Functions
	Slide 42: Why we use Friend Function?
	Slide 43: Friend Functions
	Slide 44: Characteristics Friend Functions
	Slide 45: Advantage Friend Functions
	Slide 46: Demerits of Friend Functions
	Slide 47: Friend Functions
	Slide 48: Friend Functions
	Slide 49: Inheritance
	Slide 50: Inheritance
	Slide 51: Inheritance
	Slide 52: Modes of Inheritance
	Slide 53: Benefits of Inheritance
	Slide 54: Types of Inheritance
	Slide 55: Single Inheritance
	Slide 56: Single Inheritance
	Slide 57: Multiple Inheritance
	Slide 58: Multiple Inheritance
	Slide 59: Multilevel Inheritance
	Slide 60: Multilevel Inheritance
	Slide 61: Hierarchical Inheritance
	Slide 62: Hybrid Inheritance
	Slide 63: Polymorphism
	Slide 64: Function Overloading
	Slide 65: Rules for Function Overloading
	Slide 66: Function Overloading
	Slide 67: Function Overloading
	Slide 68: Operator Overloading
	Slide 69: Operator Overloading
	Slide 70: Operator Overloading
	Slide 71: Operator Overloading
	Slide 72: Operator Overloading
	Slide 73: Operator Overloading
	Slide 74: Operator Overloading
	Slide 75: Run-time Polymorphism
	Slide 76: Virtual Function
	Slide 77: Run-time Polymorphism
	Slide 78: Virtual Function
	Slide 79: Virtual Function
	Slide 80
	Slide 81: Introduction to Data Structures
	Slide 82: Introduction to Data Structures
	Slide 83: Types of Data Structures
	Slide 84: Types of Data Structures
	Slide 85: Linear Data Structures
	Slide 86: Applications of Data Structures
	Slide 87: Operations on Data Structures
	Slide 88: Types of Data Structures
	Slide 89: Non-Linear Data Structures

