
Dept. of CSE Prepared by Chetna Singh

UNIT 3

Basic Computer Engineering (BT-205)

Dept. of CSE Prepared by Chetna Singh

SCHEME

Dept. of CSE Prepared by Chetna Singh

SYLLABUS

Dept. of CSE Prepared by Chetna Singh

Classes
⮚A class is a user-defined data type.
⮚class holds data members and member functions.
⮚It is a blueprint for objects in Object-Oriented Programming (OOP).
⮚Example: Class of birds — all birds can fly, have wings and beaks.
⮚A class works as “template" for creating objects.
⮚Central idea in oops is Placing data & functions in a single entity.
⮚Each class is collection of data & functions that manipulate the data.
⮚When we define a class, we only define specifications for the object.
⮚No storage or memory is allocated while defining a class.
⮚To use the data and access functions defined in a class, we must

create objects.

Dept. of CSE Prepared by Chetna Singh

Properties of a Classes
⮚Class name should start with an uppercase letter (convention).
⮚Contains data members and member functions.
⮚Access to members is controlled by access specifiers.
⮚Member functions can be defined inside or outside the class.
⮚Similar to C structures, but defaults to private access.
⮚Supports OOP features: Inheritance, Encapsulation, Abstraction.
⮚Objects hold separate copies of data members.

Dept. of CSE Prepared by Chetna Singh

Classes
#include <iostream>
using namespace std;
class rectangle
{ // Class definition

public:
int len,br; // Data member
void get_data();
void area();
void print_data();

};

Syntax:

class Class_Name
{ // Class definition

private:
// Data member

public:
// Methods

};

Dept. of CSE Prepared by Chetna Singh

Classes
#include <iostream>
using namespace std;
class Fruit { // Class definition
public:

string color =“red”; // Data member
void show()
{ // Member function

cout << "Fruit color is : " << color << endl;
}

};
int main() {

Fruit apple; // Object declared
apple.show();
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Inside Class Definition
#include <iostream>
using namespace std;
class Car {
public:

void Brand() {
// class Function definition

cout << "Car Brand: Tesla" << endl;
}

};
int main() {

Car c1;
c1.Brand(); // Calling member function
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Outside Class Definition
#include <iostream>
using namespace std;
class Car {
public:

void Brand(); // Function declaration(prototype) inside class
};

int main() {
Car c2;
c2.Brand(); // Calling member function
return 0;

}
// Function definition outside class
void Car::Brand() {

cout << "Car Brand: BMW" << endl;
}

Dept. of CSE Prepared by Chetna Singh

Object
⮚An object used to represent real-world concepts and entities.
⮚Objects are instances of a class.
⮚Memory is allocated when an object is created.
⮚Object can be created using the class name.
⮚Object interacts with the help of methods defined within class.
⮚For example, the human type student is a class, while a particular student

named Ram is an object of the student class.
⮚an object is a fundamental concept in Object-Oriented Programming.
⮚It represents a concrete instance of a class.
⮚Objects are the actual entities that are created as an instance of a class.

There can be as many objects of a class as desired.
⮚Ex. int a; //an instance of type integer
⮚ student ram; //an instance of type student

Dept. of CSE Prepared by Chetna Singh

Characteristics of an Object
1. Instance of a Class:
⮚A class acts as a blueprint or a template.
⮚It defines the structure and behavior (data members and member

functions) for a specific type of entity.
⮚An object is a tangible realization of that blueprint.
⮚it's a specific entity created based on the class definition.
2. Encapsulation of Data and Behavior:
⮚An object bundles together data (attributes or member variables) and

the functions (methods or member functions).
⮚It operate on that data into a single unit. This principle is known as

encapsulation.

Dept. of CSE Prepared by Chetna Singh

Characteristics of an Object
3. State and Behavior:
⮚State: The state of an object is defined by the values of its data

members at a particular point in time.
⮚Behavior: The behavior of an object is determined by the actions it

can perform through its member functions.
4. Memory Allocation:
⮚When a class is defined, no memory is allocated.
⮚Memory is only allocated when an object of that class is created.
⮚Each object of a class will have its own separate memory space for its

data members.

Dept. of CSE Prepared by Chetna Singh

Creating an Object
➢Once the class is defined, we can create its object in the same way

we declare the variables of any other inbuilt data type.
ClassName objectName;

➢Member Access : Members of the class can be accessed inside the
class itself simply by using their assigned name.
➢To access them outside, the (.) dot operator is used with the object

of the class.
➢obj.member1 // For data members
➢obj.member2(..) // For functions

Dept. of CSE Prepared by Chetna Singh

Creating an Object
#include <iostream>
using namespace std;
class Box {
public:

double length, height;
};
int main() {

Box Box1, Box2;
// Assign values and

compute volume
}

Dept. of CSE Prepared by Chetna Singh

Creating an Object
#include <iostream>
using namespace std;
class Example
{
private:
int a,b,c; //data member
public:
int add(int a, int b)
{

c=a+b;
}

void print()
{
cout<<“sum is : “<<c<<“\n”;

}
};
int main()
{
Example obj;

// object created
Obj.add(10,20);

//function call
Obj.print();

return 0;
}

Dept. of CSE Prepared by Chetna Singh

Creating an Object
#include <iostream>
using namespace std;
class Car
{
// Class definition
public:
string brand;
};
int main()
{
Car myCar;

// Object create
myCar.brand = “BMW";

Car myCar2;
// Object create

myCar.brand = "Toyota";
// Assign value

cout << "Car Brand: " <<myCar.brand;
// Access object data

return 0;
}

Dept. of CSE Prepared by Chetna Singh

Object Vs Classes

Class Object

For a single class there can be any number of

objects. Ex. For River class , ganga Yamuna,

Narmada can be objects.

There are many objects that can be created from

one class. These objects make use of method and

attributes defined by belonging class.

Scope of class is persistent throughout the

program.

Objects can be created & destroyed as per the

requirements.

Class can not be initialized with some property

value.

We can assign some property values to the

objects.

A class has unique name Various objects having different names can be

created for the same class.

Dept. of CSE Prepared by Chetna Singh

Object Vs Classes

Class Object

A blueprint or template for creating objects. An instance of a class with actual values.

No memory is allocated for a class until an object

is created.

Memory is allocated when an object is created.

Conceptual entity describing structure and

behaviour.

A real-world entity created from the class.

Defines properties and functions common to all

objects of that type.

Stores specific data and manipulates it using class

functions.

Represents a general concept or type. Represents a specific instance of the class.

Dept. of CSE Prepared by Chetna Singh

Structure Vs Classes

Structure Class

By default members of structure are public. By default members of class are private.

Structure can not be inherited. Class can be inherited.

Structure do not require constructors. Classes require constructors for initializing the

objects.

Structure contains only data members. Class contains the data as well as the function

members.

Dept. of CSE Prepared by Chetna Singh

Access Specifiers

⮚Public: Accessible from anywhere.
⮚Private: Accessible only within the class (default).
⮚Protected: Accessible within the class and derived classes.
⮚Example:
⮚class PublicAccess { public: int x; void display(); };
⮚class PrivateAccess { private: int x; void display(); };
⮚class ProtectedAccess { protected: int x; void display(); };

Dept. of CSE Prepared by Chetna Singh

Scope Resolution Operator
⮚The scope resolution operator in C++ is denoted by two colon symbols (::).
⮚It is a powerful operator used to specify the scope to which an identifier

(variable, function, class, or namespace) belongs.
⮚This is particularly useful in situations where there might be name

conflicts or when you need to explicitly refer to an entity within a specific
scope.
⮚Scope resolution operator (::) is used to access the identifiers such as

variable names and function names defined inside some other scope in the
current scope.
⮚Uses:
⮚Access global variables when local variables have the same name.
⮚Define functions outside a class.
⮚Access static members of a class.
⮚Resolve ambiguity in multiple inheritance.

Dept. of CSE Prepared by Chetna Singh

Scope Resolution Operator
⮚Accessing Global Variables: When a local variable has the same

name as a global variable, the local variable takes precedence within
its scope.
⮚To access the global variable explicitly, the scope resolution operator

can be used.
int x = 10; // Global variable
int main() {
int x = 20; // Local variable
cout << "Local x: " << x ;
cout << "Global x: " << ::x ;
return 0; }

Dept. of CSE Prepared by Chetna Singh

Scope Resolution Operator
⮚Defining Member Functions Outside a Class: Member functions of a

class can be defined outside the class definition using the scope
resolution operator to associate the function with its respective class.

class Fruit {
public:

void Print_Color();
};

void Fruit::Print_Color() {
// Function definition

}

Dept. of CSE Prepared by Chetna Singh

Scope Resolution Operator
⮚Accessing Static Members of a Class: Static members (variables or

functions) belong to the class. They are accessed using the class name
followed by the scope resolution operator and the member name.

class MyClass {
public:

static int count;
};
int MyClass::count = 0; // Definition of static member

int main() {
cout << MyClass::count;
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Scope Resolution Operator
⮚Referring to Members of a Namespace: To access members (variables,

functions, classes, etc.) declared within a namespace, the namespace
name is used, followed by the scope resolution operator and the member
name.

namespace MyNamespace
{

int a = 5;
}
int main() {

cout << MyNamespace::a;
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Constructors
⮚A constructor is a special method(special class members).
⮚It is automatically called when an object of a class is created.
⮚Constructors are called by the compiler every time an object of that

class is instantiated.
⮚Constructors share the same name as the class.
⮚It can be defined inside or outside the class definition.
⮚Special member function with the same name as the class.
⮚No return type, not even void.
⮚Automatically invoked when an object is created.
⮚Types of constructors :
1. Default Constructor: No parameters.
2. Parameterized Constructor: Takes parameters.
3. Copy Constructor: Copies one object to another.

Dept. of CSE Prepared by Chetna Singh

Characteristics of a Constructor
⮚Declared in public section.
⮚No return type because Constructors do not return values.
⮚Cannot be inherited or virtual.
⮚Cannot have their address taken.
⮚If we do not specify a constructor, Compiler generates a default

constructor for us (expects no parameters and has an empty body).
⮚The name of the constructor is the same as its class name.
⮚A constructor gets called automatically when we create the object of

the class.
⮚Multiple constructors can be declared in a single class.
⮚In case of multiple constructors, the one with matching function

signature will be called.

Dept. of CSE Prepared by Chetna Singh

Constructors
class Fruit
{

public:

Fruit()
{

cout << “Constructor called";
}

};

int main() {
Fruit Orange;

// Create an object of fruit Class
//(this will call the constructor)

return 0;
}

Output:
Constructor called

Ex.2
class Line {
public:

Line(); // constructor
};
Line::Line() {

cout << "Object created";
}

Dept. of CSE Prepared by Chetna Singh

Default Constructors
#include <iostream>
using namespace std;
// Class with no explicity defined

constructors
class Fruit
{
public:
};
int main() {

// Creating object
Fruit apple;
return 0;

}

No constructor defined in class
means default constructor
called.

Dept. of CSE Prepared by Chetna Singh

Default Constructors
#include <iostream>
using namespace std;
class Fruit{
public:

string color;
// Default Constructor
Fruit() {

color = “Red";
cout << "Default Constructor

called:"<<" Fruit Color is " << color;
}
};

int main() {
Fruit apple; // Default Constructor
return 0;
}

Output:
Default Constructor called: Fruit Color is Red

1. A default constructor is automatically
generated by the compiler if the programmer
does not define one.

2. This constructor doesn't take any argument as
it is parameter less and initializes object
members using default values.

3. It is also called a zero-argument constructor.

Dept. of CSE Prepared by Chetna Singh

Parameterized Constructors
#include <iostream>
using namespace std;
class ABC {
public:

int val;

// Parameterized Constructor
ABC(int x) {

val = x;
}

};

int main() {

// Creating object with a parameter
ABC a(10);
cout << a.val;
return 0;

}

Output:
10

Dept. of CSE Prepared by Chetna Singh

Parameterized Constructors
#include <iostream>
using namespace std;
class Fruit {
public:

string color;
// Parameterized Constructor
Fruit(string b) {

color = b;
cout << "Parameterized

Constructor: fruit color is " << color
<< endl;
}

};
int main() {

Fruit apple(“Green");
// Parameterized Constructor
return 0;

}

Output:
Parameterized Constructor: fruit color is Green

1. Parameterized constructor allow us to pass
arguments to constructors.

2. these arguments help initialize an object's
members.

3. To create a parameterized constructor, simply
add parameters to it the way you would to any
other function.

4. When you define the constructor’s body, use
the parameters to initialize the object's
members.

Dept. of CSE Prepared by Chetna Singh

Copy Constructors
#include <iostream>
using namespace std;
class Fruit{
public:

string color;
Fruit(string b) { // Parameterized Constructor

color = b;
cout << "Parameterized Constructor: color is " <<

color<< endl;
}

Fruit(Fruit &f) { // Copy Constructor
color = f.color;
cout << "Copy Constructor data for new fruit now new

fruit color is " << color << endl;
}

};
int main() {

Fruit apple("Yellow"); // Parameterized Constructor
Fruit mango = apple; // Copy Constructor

return 0;
}

Output:

Parameterized Constructor: color is Yellow

Copy Constructor data for new fruit now new
fruit color is Yellow

Dept. of CSE Prepared by Chetna Singh

Copy Constructors
#include <iostream>
using namespace std;
class A {
public:

int val;
// Parameterized constructor

A(int x) {
val = x;

}
// Copy constructor
A(A &a) {

val = a.val; } };
int main() {

A a(20);
// Creating another object from a

A newobj(a);
cout << newobj.val;
return 0;

}

Output:
20

Dept. of CSE Prepared by Chetna Singh

Destructors
⮚Destructors are called by the compiler when the scope of an object

ends.
⮚They deallocate memory earlier used by the object of the class to avoid

any memory leaks.
⮚Destructors have the same name as the class but Prefixed with ~.
⮚Destructor is an instance member function that is invoked automatically

whenever an object is going to be destroyed.
⮚destructor is the last function that is going to be called before an object

is destroyed.
⮚Special function called when an object goes out of scope.
⮚No arguments.
⮚Syntax:

~className(){ // Body of destructor }

Dept. of CSE Prepared by Chetna Singh

Destructors
class A {
public:

~A(); // destructor
};

Dept. of CSE Prepared by Chetna Singh

Destructors
#include <iostream>
using namespace std;
class File {
public:

File() {
cout << "File Opened!" << endl;

}

~File() {
cout << "File Closed!" << endl;

}
};
int main() {

File f1; // Constructor
return 0; // Destructor

}

Dept. of CSE Prepared by Chetna Singh

Destructors
class A {

public:
A()
{

cout << "Constructor Called “; }
~A() {

cout << "Destructor Called”;
} };

int main() {
A obj;
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Characteristics of a Destructor
⮚Destructor has the same name as their class name
⮚preceded by a tilde (~) symbol.
⮚Only one destructor is defined in a class.
⮚destructor cannot be overloaded.
⮚Destructor neither requires any argument nor returns any value.
⮚It is automatically called when an object goes out of scope.
⮚Destructor release memory space occupied by the objects created by

the constructor.
⮚In destructor, objects are destroyed in the reverse of an object

creation.

Dept. of CSE Prepared by Chetna Singh

Friend Functions
⮚Friend function is a non-member function.
⮚It is Defined outside the class.
⮚It is Used to access private and protected members.
⮚It is Declared with the friend keyword.
⮚it is declared within the class definition using the friend keyword.
⮚it is not considered a member of that class.
⮚it is not invoked using the member-selection operators (. or ->).
⮚Friend function allow to access the private and protected members of

another class.
⮚Syntax:

class A {
friend void fun();

};

Dept. of CSE Prepared by Chetna Singh

Friend Functions
⮚Example:
class class_name {

private:
//data
friend return_type friend_fun_name(); //declare

};
return_type friend_fun_name(){

//Object create
//private data access here

}

int main() {
friend_fun_name(); //call
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Why we use Friend Function?
class ABC {

private:
int a;

}
int main() {

ABC obj;
// Error! Cannot access private members from here.
obj.a = 5;

}
⮚friend functions that break this rule and allow us to access private

member functions from outside the class.

Dept. of CSE Prepared by Chetna Singh

Friend Functions
#include <iostream> using namespace std;
class A {

private:
int a;
friend void fun();

};
void fun(){

A obj;
obj.a=10;
cout<<"friend function update private data:"<< obj.a;

}

int main() {
fun();
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Characteristics Friend Functions
1. Access to private and protected members
2. Declared inside the class
3. Defined outside the class
4. Not a member function
5. Can be member function of another class.
⮚Friend Functions Use
⮚Operator overloading: For overloading binary operators.
⮚Utility functions: For implement global utility functions.
⮚Testing: friend functions used to test private state of a class.

Dept. of CSE Prepared by Chetna Singh

Advantage Friend Functions
➢ No Inheritance :- A friend function used to access members without

the need of inheriting the class.
➢ Bridge b/w classes:- The friend function acts as a bridge between two

classes by accessing their private data.
➢ Versatile:- It can be used to increase the versatility of overloaded

operators.
➢ Declaration:- It can be declared either in the public or private or

protected part of the class.

Dept. of CSE Prepared by Chetna Singh

Demerits of Friend Functions
➢ Violate data hiding:- Friend functions have access to private members

of a class from outside the class which violates the law of data hiding.
➢ No Runtime Polymorphism:- Friend functions cannot do any run-time

polymorphism in their members.
➢ Less Effective Encapsulation:-Declaring too many functions or external

classes as friends with access to a class’s private or protected data
reduces the effectiveness of encapsulation. This compromises one or
more of the core principles of object-oriented programming.

➢ Non-inheritable:- Friendship is not inherited. In layman's terms, if a
base class has a friend function, then the function doesn’t become a
friend of the derived class(es).

Dept. of CSE Prepared by Chetna Singh

Friend Functions
class A {

private:
int a=10;
friend int fun();

};

int fun(){
A obj;
return obj.a ;

}
int main() {

cout<<“friend function access private variable a:”;
cout<<fun();
return 0;

}
➢ friend functions that break this rule and allow us to access private member

functions from outside the class.

Dept. of CSE Prepared by Chetna Singh

Friend Functions
#include <iostream>
using namespace std;
class A {
private:
int a=10;
friend int fun(int x);
};
int fun(int x){
A obj;
return obj.a + x;
}
int main() {
cout<<“friend function access private value of a:”<<fun(44)<<endl;
return 0;
}

Dept. of CSE Prepared by Chetna Singh

Inheritance
⮚Inheritance is a core concept of Object-Oriented Programming
⮚It allows a new (derived) class to inherit properties and behaviours from

an existing class.
⮚It is capability of a class to derive property of another class.
⮚ It provide code reusability, extensibility and hierarchical relationships

among classes.
⮚It establishes an "is-a" relationship between classes.
⮚It allow us to defined a class in terms of another class.
⮚Existing class is called base class.
⮚New class is called derived class.

class Base
{ // Base class members};

class Derived : public Base
{ // Derived class members};

Dept. of CSE Prepared by Chetna Singh

Inheritance

Dept. of CSE Prepared by Chetna Singh

Inheritance
⮚Base Class (Parent Class):The class from which properties and

methods are inherited.
⮚Derived Class (Child Class): The class that inherits the properties and

methods from the base class.
⮚Access Specifiers: public, protected, and private. It used to control

the visibility and accessibility of base class members within the
derived class. We generally used public inheritance.

Dept. of CSE Prepared by Chetna Singh

Modes of Inheritance
1. Public inheritance
⮚The base class’s public members become →public and
⮚protected members become →protected in the derived class.
⮚Private members are inaccessible.
2. Protected Inheritance
➢ base class’s public & protected members become →protected in derived.
➢ Private members are inaccessible.
3. Private Inheritance
⮚Both public & protected members of base class become →private in derived.
⮚Private members are inaccessible.

Dept. of CSE Prepared by Chetna Singh

Benefits of Inheritance
⮚Code Reusability: Reduces redundant code by allowing derived

classes to reuse code from base classes.
⮚Extensibility: Allows for the creation of new classes that build upon

existing functionality without modifying the original code.
⮚Polymorphism: Enables the use of base class pointers to refer to

derived class objects, facilitating dynamic method dispatch.
⮚Modularity: Promotes a more organized and structured codebase.
⮚Reliability: By reusing a base class that has already been tested, the

reliability of the new code is enhanced.
⮚Easy to understand.
⮚Save time & effort.

Dept. of CSE Prepared by Chetna Singh

Types of Inheritance
⮚There are 5 types of Inheritance:
1. Single Inheritance: A derived class inherits from only one base class.
2. Multiple Inheritance: A derived class inherits from multiple base

classes.
3. Multilevel Inheritance: A derived class inherits from a base class,

which itself is derived from another base class.
4. Hierarchical Inheritance: Multiple derived classes inherit from a

single base class.
5. Hybrid Inheritance: A combination of two or more types of

inheritance.

Dept. of CSE Prepared by Chetna Singh

Single Inheritance

➢ In this type of inheritance, there is only one derived class inherited
from one base class.

class base {

//Body

};

class derived : access_specifier base

{

//Body

};

Dept. of CSE Prepared by Chetna Singh

Single Inheritance

#include <iostream>

using namespace std;

class A

{

public:

void fun1()

{

cout<<“Base Class"<<endl;

}

};

class B : public A
{

public:
void fun2() {

cout<<“child class"<<endl;
} };

int main() {
B obj;
obj.fun1();
obj.fun2();
return 0; }

Dept. of CSE Prepared by Chetna Singh

Multiple Inheritance
➢ one derived class inherits from two or more base class.

class base1

{

//body

};

class base2 {

//body

};

class derived : public base1, public base2

{

//body of derived class

};

Dept. of CSE Prepared by Chetna Singh

Multiple Inheritance

class A {

public:

void fun1()

{ cout<<“class A”; }

};

class B {

public:

void fun2()

{ cout<<“class B”; } };

class C : public A, public B

{

public:

void fun3() {

fun1();

fun2(); } };

int main() {

C obj;

obj.fun1();

obj.fun2();

obj.fun3();

return 0; }

Dept. of CSE Prepared by Chetna Singh

Multilevel Inheritance
➢ A derived class inherits from another derived class in this type of

inheritance.

class C

{ //body };

class B : public C

{ //body };

class A : public B

{ //Derived body };

Dept. of CSE Prepared by Chetna Singh

Multilevel Inheritance

class A {

public:

void fun1() {

cout<<“class A"<<endl; } };

class B: public A {

public:

void fun2() {

cout<<“class B"<<endl; } };

class C : public B {
public:
void fun3() {
fun1();
fun2();
cout<<“class C"<<endl;
} };
int main() {
C obj;
obj.fun3();
return 0; }

Dept. of CSE Prepared by Chetna Singh

Hierarchical Inheritance

➢ Multiple derived classes are inherited from a single base class in this
type of inheritance.

class base { //body };

class derived1 : public base

{ //body };

class derived2 : public base

{ //body };

Dept. of CSE Prepared by Chetna Singh

Hybrid Inheritance

• Hybrid inheritance is the combination of two or more types of
inheritance. We can make various combinations in hybrid
inheritance.

Dept. of CSE Prepared by Chetna Singh

Polymorphism
⮚Polymorphism means same function possesses different behaviour in

different situations.it is Important feature in oops
⮚Polymorphism, meaning having “many forms," .
⮚It enables code to be more flexible, reusable, and maintainable.
⮚It is ability of a message to be displayed in more than one form.
⮚Example boy at the same time son, sibling, friend, student.

Dept. of CSE Prepared by Chetna Singh

Function Overloading
⮚Compile-time Polymorphism/ Static Polymorphism / Early binding.
⮚This type of polymorphism is resolved during the compilation phase.
⮚The compiler determines which function or operator to call based on the

arguments' types and number.
⮚Allows multiple functions with the same name but different parameters.
⮚Function overloading is a feature of object-oriented programming
⮚where two or more functions can have the same name but behave

differently for different parameters. Functions can be overloaded either
by changing the number of arguments or changing the type of arguments.
⮚Types of Compile-Time Polymorphism
1. function overloading
2. operator overloading.

Dept. of CSE Prepared by Chetna Singh

Rules for Function Overloading
1. The overloaded functions may differ by number of parameters.
2. The overloaded functions may differ by data types.
3. The same function name is used for various instances of function call.
⮚For example, if there is a function sum which performs addition operation

then can use overloading functions like this –
int sum(int a,int b);
int sum(int a, int b,int c);
int sum(int a, int b,int c,int d);

⮚Similarly , the function overloading can be achieved like this –
int sum(int a, int b);
float sum(float a,float b);
double sum(double a, double b);
char sum(char a,char b);

⮚That means we can handle different number of parameters or different typ
parameters using the same function name.

Dept. of CSE Prepared by Chetna Singh

Function Overloading
class Addition {
public:
void add(int a, int b) {

cout << "Integer Sum = " << a + b << endl; }
void add() {

cout << “Addition function "; } };
int main() {

Addition A1;

A1.add(10, 2);
A1.add();
return 0; }

Dept. of CSE Prepared by Chetna Singh

Function Overloading
class A {

public:
int add(int a, int b) {

return a + b; }
string add(string a, string b) {

return a + b; } };
int main() {

A obj;
cout << obj.add(5, 10);
cout << endl;
cout << obj.add("hello , ", "Chetna .!");

return 0; }

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
⮚Operator Overloading Allows operators (like +, -, *, /) to be redefined

in class.
⮚This provides a more intuitive way to perform operations on user-

defined types.
⮚ability to provide the operators with a special meaning for particular

data type, this ability is known as operator overloading.
⮚For example, we can make use of the addition operator (+) for string

to concatenate two strings and for integer to add two integers.
⮚The << and >> operator are binary shift operators but are also used

with input and output streams. This is possible due to operator
overloading.

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
⮚Operator overloading can be defined as an ability to define a new meaning

for an existing (built-in) "operator".
⮚Various types of operators are overloaded:
1. Mathematical operators such as + ++
2. Relational operators such as < > ==
3. Logical operators such as && ||
4. Access operators [] ->
5. Assignment operator =
6. Stream I/O operators < < > >
⮚All of these operators have a predefined and unchangeable meaning for

the built-in types.
⮚All of these operators can be given a specific interpretation for different

classes or combination of classes.
⮚The overloading function can be a member or a non member function.

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
⮚C++ provides the flexibility to the programmers in extending these built-in

operators.
⮚Define a function with keyword operator.
⮚Then write the operator as a function name. That means we can program

that specified operator.
⮚Overloaded operator must be either Non static member function of class

or At least one parameter should be class.
⮚Makes no assumptions about similar operators. For example, the fact that

you overloaded + does not mean that you have also defined += for your
class type.
⮚Restrictions on use of operators.
⮚It's not possible to change an operator's precedence.
⮚It's not possible to create new operators,
⮚For example: You can not redefine :: sizeof. ?, or. (dot).

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
class A {

public:
int x;
A(int a) { x = a; }
A operator+(A o)

{ return A(x + o.x); }};
int main() {

A a1(5), a2(10);
cout << (a1 + a2).x;
return 0; }

Output:
15

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
#include <iostream>
using namespace std;
class A {
public:

int x;
A(int a) { x=a;}
// overload of +
A operator+(A o) {

return A(x + o.x);
} };

int main() {
A a1(5), a2(10);
A sum = a1 + a2; // overload operator+
cout<<sum.x; // print “15”
return 0;

}

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
class Complex {
public:

int real, imag;
Complex(int r, int i) { real = r; imag = i; }

Complex operator + (Complex c) {
return Complex(real + c.real, imag + c.imag);

}
};
int main() {

Complex c1(2, 3), c2(4, 5);
Complex c3 = c1 + c2; // calls operator+
cout << c3.real << " + " << c3.imag << "i" << endl;
return 0; }

Dept. of CSE Prepared by Chetna Singh

Operator Overloading
class A{
public:
int a;
A(int x){ a = x;}
void operator !(){ a = -a;} };
int main(){
A ob(10);
cout<<"given value of a is : " <<ob.a;
!ob; //! operator overload
cout<<"\nNew value operator overloading ! is : "<<ob.a;
return 0;}

Dept. of CSE Prepared by Chetna Singh

Run-time Polymorphism
⮚Also called Dynamic Polymorphism function overriding.
⮚This type of polymorphism is resolved during program execution.
⮚It relies on inheritance and virtual functions.
⮚Virtual Functions: Declared in a base class using the virtual keyword

and overridden in derived classes. When a base class pointer or
reference points to a derived class object, calling a virtual function
through that pointer/reference will invoke the derived class's version
of the function. This is achieved through a mechanism called the
"virtual table" (vtable).

Dept. of CSE Prepared by Chetna Singh

Virtual Function
➢ Virtual function overwrite in derived class.
➢ It tells compiler to perform late binding on this function.
➢ Virtual keyword is used to defined virtual function.
➢ Virtual function ensure that the correct function is called for an object.
➢ Reference pointer used to call virtual function.
➢ A virtual function is a member function.
➢ It is declared within a base class and redefined by a derived class.
➢ The virtual function within the base class defines the form of the interface

to that function Each redefinition of the virtual function by a derived class
indicate some different task related to derived class.

➢ When a virtual function is redefined by a derived class, the keyword virtual
is not needed. The virtual function written in base class acts as interface and
the function defined in derived classes act as different forms of the same
function. This property of virtual function brings the runtime polymorphism.

Dept. of CSE Prepared by Chetna Singh

Run-time Polymorphism
class Base {

public:
virtual void show() { cout << "Base show\n"; }

};
class Derived : public Base {

public:
void show() { cout << "Derived show\n"; }

};
int main() {

Base* b = new Derived();
b->show();
delete b;
return 0;

}
Output:
Derived show

Dept. of CSE Prepared by Chetna Singh

Virtual Function
#include <iostream>
using namespace std;

class Base {
public:

virtual void show()
{

cout << "Base class
show method." << endl;

}
};

int main()
{

Base baseObj;
Derived derivedObj;

baseObj.show();

derivedObj.show();

return 0;

}

class Derived : public Base
{
public:

void show()
{

cout << "Derived class
method." << endl;

}
};

Dept. of CSE Prepared by Chetna Singh

Virtual Function
class Shape {
public:
virtual void draw() { cout << "Drawing a shape."; } };
class Circle : public Shape {
public:
void draw() { cout << "Drawing a circle."; } };
int main() {
Shape* s1 = new Circle();
s1->draw(); // Calls Circle's draw()
delete s1;
return 0; }

Dept. of CSE Prepared by Chetna Singh

Compile-Time Polymorphism Run-Time Polymorphism

It is also called Static Polymorphism. It is also known as Dynamic Polymorphism.

In compile-time polymorphism, the compiler

determines which function or operation to call

based on the number, types, and order of

arguments.

In run-time polymorphism, the decision of which

function to call is determined at runtime based on

the actual object type rather than the reference or

pointer type.

Function calls are statically binded. Function calls are dynamically binded.

Compile-time Polymorphism can be exhibited by:

1. Function Overloading

2. Operator Overloading

Run-time Polymorphism can be exhibited by

Function Overriding.

Faster execution rate. Comparatively slower execution rate.

Inheritance in not involved. Involves inheritance.

Dept. of CSE Prepared by Chetna Singh

Introduction to Data Structures
⮚A data structure represents the logical relationship that exists between

individual elements of data to carry out certain task.
⮚A data structure defines a way of organizing all data items that consider

not only the elements stored but also stores the relationship between the
elements.
⮚Data structure deals with the study of how the data is organised in

memory, how efficiently the data can be retrieved and manipulated and
possible ways in which different data items are logically related.
⮚Data structure is collection of elements and all the possible operations

which are required for those set of elements.
⮚A data structure in a set of domains D, a set of functions F and set of

axioms A. This triple (D, F, A) denotes the data structure d.

Dept. of CSE Prepared by Chetna Singh

Introduction to Data Structures
⮚A data structure is a specific way of organize, store, and manage data in a

computer's memory to facilitate efficient access and modification.
⮚It provides a systematic approach to handling data, which is crucial for

developing effective and scalable software.
⮚Organization: Data structures define how data elements are arranged

relative to each other, establishing relationships and enabling logical access
patterns.
⮚Storage: They dictate how data is physically stored in memory, influencing

memory usage and retrieval speed.
⮚Operations: It support various operations, such as insertion, deletion,

searching, and traversal, which are performed on the stored data. The
efficiency of these operations is a primary consideration when choosing a
data structure.

Dept. of CSE Prepared by Chetna Singh

Types of Data Structures
1. primitive data structure
2. Non-Primitive data structure.
⮚1. Primitive data structures :- example: int, char, float
⮚2. Non primitive data structures
⮚2. (i) Linear data structures :- In linear data structures, data elements are

arranged sequentially, one after the other. Each element has a unique
predecessor (except for the first element) and a unique successor (except for
the last element). where each element is attached to its previous and next
adjacent elements.

a) Sequential Organization: Order Preservation
b) Fixed or Dynamic Size
c) Efficient Access
d) example: lists, stacks, queues
⮚2. (ii) Non linear data structures :- Data structures where data elements are not

placed sequentially or linearly are called non-linear data structures. Examples
are trees and graphs. example: trees, graphs

Dept. of CSE Prepared by Chetna Singh

Types of Data Structures

Dept. of CSE Prepared by Chetna Singh

Linear Data Structures
⮚Elements are arranged sequentially.
⮚Elements are arranged in one dimension.
⮚Example: Array, Linked lists, stack, queue, etc.
1. Arrays: A collection of elements of the same data type stored in

contiguous memory locations.
2. Linked Lists: A sequence of nodes, where each node contains data

and a pointer to the next node.
3. Stacks: A Last-In, First-Out (LIFO) structure where elements are

added and removed from the same end.
4. Queues: A First-In, First-Out (FIFO) structure where elements are

added at one end and removed from the other.

Dept. of CSE Prepared by Chetna Singh

Applications of Data Structures
1. Databases: Data structures are used to organize and store data in a database,

allowing for efficient retrieval and manipulation.
2. Operating systems: Data structures are used in the design and implementation

of operating systems to manage system resources, such as memory and files.
3. Computer graphics: Data structures are used to represent geometric shapes

and other graphical elements in computer graphics applications.
4. Artificial intelligence: Data structures are used to represent knowledge and

information in artificial intelligence systems.
⮚Advantages of Data Structures:
1. Efficiency: Data structures allow for efficient storage and retrieval of data,

which is important in applications where performance is critical.
2. Flexibility: Data structures provide a flexible way to organize and store data,

allowing for easy modification and manipulation.
3. Reusability: Data structures can be used in multiple programs and applications,

reducing the need for redundant code.
4. Maintainability: Well-designed data structures can make programs easier to

understand, modify, and maintain over time.

Dept. of CSE Prepared by Chetna Singh

Operations on Data Structures
1. Traversing: Basically to process a data structure if every element of data

structure is visited once and only once, such type of operation is called as
traversing.

2. Insertion: When an element of the same type is added to an existing data
structure, the operation we are doing is called as Insertion operation. The
element can be added anywhere in the data structure in the data structure.

3. Deletion: When an element is removed from the data structure, the operation
we are doing is called as Deletion operation. We can delete an element from
data structure from any position.

4. Searching: When an element is checked for its presence in a data structure,
that operation we are doing is called as ‘searching’ operation. The element
that is to be searched is called as key element.

5. Sorting: When all the elements of array are arranged in either ascending or
descending order, the operation used to do this process is called as Sorting

6. Merging: When two lists List A and List B of size M and N respectively, of same
type of elements, clubbed or joined to produce the third list, List C of size
(M+N), and the operation done during the process is called as Merging.

Dept. of CSE Prepared by Chetna Singh

Types of Data Structures

Dept. of CSE Prepared by Chetna Singh

Non-Linear Data Structures
⮚Elements are not arranged sequentially, allowing for more complex

relationships.
⮚Elements are arranged in one-many, many-one and many-many

dimensions.
⮚Example: tree, graph, table, etc.
⮚Trees: Hierarchical structures where data is organized in a parent-

child relationship.
⮚Graphs: Collections of nodes (vertices) connected by edges,

representing relationships between entities.
⮚Hash Tables: Structures that map keys to values for efficient data

retrieval.

	Slide 1:
	Slide 2: SCHEME
	Slide 3: SYLLABUS
	Slide 4: Classes
	Slide 5: Properties of a Classes
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Inside Class Definition
	Slide 9: Outside Class Definition
	Slide 10: Object
	Slide 11: Characteristics of an Object
	Slide 12: Characteristics of an Object
	Slide 13: Creating an Object
	Slide 14: Creating an Object
	Slide 15: Creating an Object
	Slide 16: Creating an Object
	Slide 17: Object Vs Classes
	Slide 18: Object Vs Classes
	Slide 19: Structure Vs Classes
	Slide 20: Access Specifiers
	Slide 21: Scope Resolution Operator
	Slide 22: Scope Resolution Operator
	Slide 23: Scope Resolution Operator
	Slide 24: Scope Resolution Operator
	Slide 25: Scope Resolution Operator
	Slide 26: Constructors
	Slide 27: Characteristics of a Constructor
	Slide 28: Constructors
	Slide 29: Default Constructors
	Slide 30: Default Constructors
	Slide 31: Parameterized Constructors
	Slide 32: Parameterized Constructors
	Slide 33: Copy Constructors
	Slide 34: Copy Constructors
	Slide 35: Destructors
	Slide 36: Destructors
	Slide 37: Destructors
	Slide 38: Destructors
	Slide 39: Characteristics of a Destructor
	Slide 40: Friend Functions
	Slide 41: Friend Functions
	Slide 42: Why we use Friend Function?
	Slide 43: Friend Functions
	Slide 44: Characteristics Friend Functions
	Slide 45: Advantage Friend Functions
	Slide 46: Demerits of Friend Functions
	Slide 47: Friend Functions
	Slide 48: Friend Functions
	Slide 49: Inheritance
	Slide 50: Inheritance
	Slide 51: Inheritance
	Slide 52: Modes of Inheritance
	Slide 53: Benefits of Inheritance
	Slide 54: Types of Inheritance
	Slide 55: Single Inheritance
	Slide 56: Single Inheritance
	Slide 57: Multiple Inheritance
	Slide 58: Multiple Inheritance
	Slide 59: Multilevel Inheritance
	Slide 60: Multilevel Inheritance
	Slide 61: Hierarchical Inheritance
	Slide 62: Hybrid Inheritance
	Slide 63: Polymorphism
	Slide 64: Function Overloading
	Slide 65: Rules for Function Overloading
	Slide 66: Function Overloading
	Slide 67: Function Overloading
	Slide 68: Operator Overloading
	Slide 69: Operator Overloading
	Slide 70: Operator Overloading
	Slide 71: Operator Overloading
	Slide 72: Operator Overloading
	Slide 73: Operator Overloading
	Slide 74: Operator Overloading
	Slide 75: Run-time Polymorphism
	Slide 76: Virtual Function
	Slide 77: Run-time Polymorphism
	Slide 78: Virtual Function
	Slide 79: Virtual Function
	Slide 80
	Slide 81: Introduction to Data Structures
	Slide 82: Introduction to Data Structures
	Slide 83: Types of Data Structures
	Slide 84: Types of Data Structures
	Slide 85: Linear Data Structures
	Slide 86: Applications of Data Structures
	Slide 87: Operations on Data Structures
	Slide 88: Types of Data Structures
	Slide 89: Non-Linear Data Structures

